Home
Class 12
MATHS
If f(x) = (1)/(2) x - 1, then on the int...

If `f(x) = (1)/(2) x - 1`, then on the interval `[0, pi]` :

A

tan [f(x)] is continuous but `(1)/(f(x))` is not

B

tan [f(x)] and `f^(-1) (x)` are both continuous

C

tan [f(x)] and `(1)/(f(x))` are both continuous

D

tan [f(x)] and `(1)/(f(x))` are both discontinuous

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATIONS|11 Videos
  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|7 Videos
  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|10 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|9 Videos

Similar Questions

Explore conceptually related problems

Find the absolute maximum and minimum values of a function f given by f(x) = 2x^(3) – 15x^(2) + 36x +1 on the interval [1, 5].

Verify Mean Value Theorem if f(x)= x^(3) - 5x^(2) - 3x in the interval [1,3] .

If log_(0.3) (x-1) lt log_(0.09) (x-1) , then x lies in the interval :

If log_(0.3)(x-1) < log_(0.09)(x-1) , then x lies in the interval :

Let, f(x) = int e^(x) (x-1)(x-2) dx , then f(x) decreases in the interval

Let f(x)=[e^(x) (x-1)(x-2)] . Then f decrease in the interval :

f(x) = (sqrt(1+px) - sqrt(1 - px))/(x), -1 le x le 0 = (2x + 1)/(x-2), 0 le x le 1 is continuous in the interval [-1, 1], then p is :

Verify Rolle's theorem for the function f(x)=x^(2)-4x-3 , in the interval [1,4].

verify mean value therem for the function f(x) = x^2 -4x -3 in the interval [1,4]

MODERN PUBLICATION-LIMIT AND CONTINUITY -MULTIPLE CHOICE QUESTIONS(LEVEL - II )
  1. Let f(x) = (sqrt(1 + sin x)-sqrt(1-sin x))/(x)lim The value, which sho...

    Text Solution

    |

  2. To make f(x)=(x+1)^(cotx) continuous at x=0,f(0) must defined as

    Text Solution

    |

  3. If f(x) = (1)/(2) x - 1, then on the interval [0, pi] :

    Text Solution

    |

  4. The value of x, where the function : f(x) = (tan x log (x-2))/(x^(2) -...

    Text Solution

    |

  5. Let f(x) = (tan ((pi)/(4) - x))/(cot 2 x), x ne pi//4, the value which...

    Text Solution

    |

  6. Let f(x) = x + 2, where x le 1 and f(x) = 4x - 1, when x gt 1, then :

    Text Solution

    |

  7. Let the function f be defined by f(x) = "x sin" (1)/(x), when x ne 0 =...

    Text Solution

    |

  8. f(x) = (|x-a|)/(x-a), when x ne a, = 1, when x = a, then :

    Text Solution

    |

  9. The value of f(0) for which the function : (log(e) (1-ax) - log(3) (1-...

    Text Solution

    |

  10. If f(x) = ((e^(x)-1)^(4))/(sin((x^(2))/(lambda^(2)))log(1+(x^(2))/(2))...

    Text Solution

    |

  11. If f(x) = [x] + [-x], x ne 2 = lambda, x = 2, then f is continuous at ...

    Text Solution

    |

  12. Let f(x) be defined by f(x) = {{:((|x^(2) - x|)/(x^(2) - x),x ne 0"," ...

    Text Solution

    |

  13. lim(x rarr oo) ((x^(2) + 5x + 3)/(x^(2) + x + 2))^(x) is :

    Text Solution

    |

  14. lim(x rarr 0) (log (3 + x) - log(3 - x))/(x) = k, the value of k is :

    Text Solution

    |

  15. lim(x rarr (pi)/(2)) ((1 - tan x//2)(1-sin x))/((1+tan x//2) (pi - 2x)...

    Text Solution

    |

  16. The value of lim(x rarr 0) (int(0)^(x^(2))sec^(2)t dt)/(x sin x) is :

    Text Solution

    |

  17. The value of lim(n rarr oo) (1 + 2^(4) + 3^(4) +…...+n^(4))/(n^(5)) - ...

    Text Solution

    |

  18. lim(x rarr 0) (sin nx[(a-n)nx - tan x])/(x^(2)) = 0, where n is non-ze...

    Text Solution

    |

  19. If lim(h rarr 0) (1 + (a)/(x) + (b)/(x^(2)))^(2x) = e^(2), then the va...

    Text Solution

    |

  20. Let f(x) = (1-tanx)/(4x-pi),x ne (pi)/(4), x in [0, (pi)/(2)], if f(x)...

    Text Solution

    |