Home
Class 12
MATHS
f(x) = (|x-a|)/(x-a), when x ne a, = 1, ...

`f(x) = (|x-a|)/(x-a)`, when `x ne a, = 1`, when x = a, then :

A

f has a limit 1 at x = a

B

f is continuous everywhere

C

f is continuous at x = a

D

limit of f does not exist at x = a

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATIONS|11 Videos
  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|7 Videos
  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|10 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|9 Videos

Similar Questions

Explore conceptually related problems

Let the function f be defined by f(x) = "x sin" (1)/(x) , when x ne 0 = 0 , when x = 0. Then at x = 0, f is :

If f(x) = {((|x-1|)/(x-1), x ne 1), (0, x = 1):} then the correct statement is

If f(x) = (x-1)/(x+1) , then f[1/f(x)] =

Let f(x) = x + 2, where x le 1 and f(x) = 4x - 1 , when x gt 1 , then :

f(x) = {(2a-x", when" a lt x lt a),(3x-2a ", when " a le x):} . Then which of the following is true?

If f(x) = (x-3)/(x+1) , then f[f{f(x)}] =

Let f(x)=(x)/(1+x)-log(1+x) , when x gt 0 , then f is :

If f(x) = x^(2) "sin" (1)/(x) , where x ne 0 , then the value of the function 'f' at x = 0, so that the function is continuous at x = 0, is :

MODERN PUBLICATION-LIMIT AND CONTINUITY -MULTIPLE CHOICE QUESTIONS(LEVEL - II )
  1. Let f(x) = (tan ((pi)/(4) - x))/(cot 2 x), x ne pi//4, the value which...

    Text Solution

    |

  2. Let f(x) = x + 2, where x le 1 and f(x) = 4x - 1, when x gt 1, then :

    Text Solution

    |

  3. Let the function f be defined by f(x) = "x sin" (1)/(x), when x ne 0 =...

    Text Solution

    |

  4. f(x) = (|x-a|)/(x-a), when x ne a, = 1, when x = a, then :

    Text Solution

    |

  5. The value of f(0) for which the function : (log(e) (1-ax) - log(3) (1-...

    Text Solution

    |

  6. If f(x) = ((e^(x)-1)^(4))/(sin((x^(2))/(lambda^(2)))log(1+(x^(2))/(2))...

    Text Solution

    |

  7. If f(x) = [x] + [-x], x ne 2 = lambda, x = 2, then f is continuous at ...

    Text Solution

    |

  8. Let f(x) be defined by f(x) = {{:((|x^(2) - x|)/(x^(2) - x),x ne 0"," ...

    Text Solution

    |

  9. lim(x rarr oo) ((x^(2) + 5x + 3)/(x^(2) + x + 2))^(x) is :

    Text Solution

    |

  10. lim(x rarr 0) (log (3 + x) - log(3 - x))/(x) = k, the value of k is :

    Text Solution

    |

  11. lim(x rarr (pi)/(2)) ((1 - tan x//2)(1-sin x))/((1+tan x//2) (pi - 2x)...

    Text Solution

    |

  12. The value of lim(x rarr 0) (int(0)^(x^(2))sec^(2)t dt)/(x sin x) is :

    Text Solution

    |

  13. The value of lim(n rarr oo) (1 + 2^(4) + 3^(4) +…...+n^(4))/(n^(5)) - ...

    Text Solution

    |

  14. lim(x rarr 0) (sin nx[(a-n)nx - tan x])/(x^(2)) = 0, where n is non-ze...

    Text Solution

    |

  15. If lim(h rarr 0) (1 + (a)/(x) + (b)/(x^(2)))^(2x) = e^(2), then the va...

    Text Solution

    |

  16. Let f(x) = (1-tanx)/(4x-pi),x ne (pi)/(4), x in [0, (pi)/(2)], if f(x)...

    Text Solution

    |

  17. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0, then ...

    Text Solution

    |

  18. lim(x rarr (pi)/(4)) (int(2)^(sec^(2)x) f(t) dt)/(x^(2) - (pi^(2))/(16...

    Text Solution

    |

  19. For x gt 0, lim(x rarr 0) ((sin x)^(1//x) + ((1)/(x))^(sin x)) is :

    Text Solution

    |

  20. The function f : R//{0} rarr R given by : f(x) = (1)/(x) - (2)/(e^(2...

    Text Solution

    |