Home
Class 12
MATHS
If f(x) = [x] + [-x], x ne 2 = lambda, x...

If `f(x) = [x] + [-x], x ne 2 = lambda, x = 2`, then f is continuous at x = 2, provided `lambda` is equal to :

A

2

B

-1

C

1

D

0

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATIONS|11 Videos
  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|7 Videos
  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|10 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|9 Videos

Similar Questions

Explore conceptually related problems

If f : R rarr R is defined by f(x) = {((cos3x-cosx)/x^(2), x ne 0),(lambda, x = 0):} and if f is continuous at x = 0 then lambda is equal to

If f(x) = {((x^(5)-32)/(x-2), x ne 2),(k, x =2):} is continuous at x = 2, then k =

If f(x) ={(3x-4, 0lexle2),(2x+lambda, 2ltxle3):} is continuous at x = 2, then lambda =

If f(x) = {{:((3 sin pi x)/(5 x),x ne 0),(2k,x = 0):} is continuous at x = 0, then the value of k is equal to :

Let f(x) = (1 - cos px)/(x sin x) , where x ne 0 and f(0) = (1)/(2) . If f is continuous at 0, then p is equal to :

If f(x) = {{:( (x^(2) - (a + 2) x + a)/(x - 2) " , " x ne 2) , (2 " " " , " x = 2):} is continuous at x = 2 , then the value of a is

If f(x) = (x^(2)-10x +25)/(x^(2)-7x+10 for x ne 5 and f is continuous at x=5, then f(5) =

If F(x)= {(Kx^(2) if x le 2),(3 if x gt 2):} is continuous at x = 2, then the value of K is

MODERN PUBLICATION-LIMIT AND CONTINUITY -MULTIPLE CHOICE QUESTIONS(LEVEL - II )
  1. Let f(x) = (tan ((pi)/(4) - x))/(cot 2 x), x ne pi//4, the value which...

    Text Solution

    |

  2. Let f(x) = x + 2, where x le 1 and f(x) = 4x - 1, when x gt 1, then :

    Text Solution

    |

  3. Let the function f be defined by f(x) = "x sin" (1)/(x), when x ne 0 =...

    Text Solution

    |

  4. f(x) = (|x-a|)/(x-a), when x ne a, = 1, when x = a, then :

    Text Solution

    |

  5. The value of f(0) for which the function : (log(e) (1-ax) - log(3) (1-...

    Text Solution

    |

  6. If f(x) = ((e^(x)-1)^(4))/(sin((x^(2))/(lambda^(2)))log(1+(x^(2))/(2))...

    Text Solution

    |

  7. If f(x) = [x] + [-x], x ne 2 = lambda, x = 2, then f is continuous at ...

    Text Solution

    |

  8. Let f(x) be defined by f(x) = {{:((|x^(2) - x|)/(x^(2) - x),x ne 0"," ...

    Text Solution

    |

  9. lim(x rarr oo) ((x^(2) + 5x + 3)/(x^(2) + x + 2))^(x) is :

    Text Solution

    |

  10. lim(x rarr 0) (log (3 + x) - log(3 - x))/(x) = k, the value of k is :

    Text Solution

    |

  11. lim(x rarr (pi)/(2)) ((1 - tan x//2)(1-sin x))/((1+tan x//2) (pi - 2x)...

    Text Solution

    |

  12. The value of lim(x rarr 0) (int(0)^(x^(2))sec^(2)t dt)/(x sin x) is :

    Text Solution

    |

  13. The value of lim(n rarr oo) (1 + 2^(4) + 3^(4) +…...+n^(4))/(n^(5)) - ...

    Text Solution

    |

  14. lim(x rarr 0) (sin nx[(a-n)nx - tan x])/(x^(2)) = 0, where n is non-ze...

    Text Solution

    |

  15. If lim(h rarr 0) (1 + (a)/(x) + (b)/(x^(2)))^(2x) = e^(2), then the va...

    Text Solution

    |

  16. Let f(x) = (1-tanx)/(4x-pi),x ne (pi)/(4), x in [0, (pi)/(2)], if f(x)...

    Text Solution

    |

  17. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0, then ...

    Text Solution

    |

  18. lim(x rarr (pi)/(4)) (int(2)^(sec^(2)x) f(t) dt)/(x^(2) - (pi^(2))/(16...

    Text Solution

    |

  19. For x gt 0, lim(x rarr 0) ((sin x)^(1//x) + ((1)/(x))^(sin x)) is :

    Text Solution

    |

  20. The function f : R//{0} rarr R given by : f(x) = (1)/(x) - (2)/(e^(2...

    Text Solution

    |