Home
Class 12
MATHS
If lim(x rarr 0) [1 + x In (1 + b^(2))]^...

If `lim_(x rarr 0) [1 + x In (1 + b^(2))]^(1/x) = 2b sin^(2) theta, b gt 0 and theta in (-pi, pi]`, then the value of `theta` is :

A

`+- (pi)/(4)`

B

`+- (pi)/(3)`

C

`+- (pi)/(6)`

D

`+- (pi)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|7 Videos
  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(LEVEL - II )|73 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|10 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|9 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) 2/x log (1+x) =

lim_(x rarr 0) (1- cos x)/(x^(2)) is :

lim_(x rarr 0) (1+ax)^(b/x)=

lim_(x rarr 0) ((1-e^(x))sin x)/(x^(2)+x^(3)) =

lim_(x rarr 0) (x^(2) sin (1//x))/(sin x) is :

lim_(x rarr 0) (cos (sinx )-1)/x^(2) =

If lim_(h rarr 0) (1 + (a)/(x) + (b)/(x^(2)))^(2x) = e^(2) , then the values of a and b, are :

lim_(x rarr 0) x^(2). sin (pi/x) is

lim_(x rarr 0) (2^(x)-1)/((1+x) ^ (1/2) -1) =

lim_(x rarr 0) (sin x + log (1-x))/x^(2) =