Home
Class 12
MATHS
Let f : R rarr [10, oo) be such that lim...

Let `f : R rarr [10, oo)` be such that `lim_(x rarr 5) f(x)` exists and `lim_(x rarr 5) ((f (x))^(2)-9)/(sqrt(|x-5|))=0`. Then `lim_(x rarr 5) f(x)` equals :

A

10

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|7 Videos
  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(LEVEL - II )|73 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|10 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|9 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) ((1+x)^(n)-1)/x is

lim_(x rarr 0) (|sin x|)/x is

lim_(x rarr 0) (sin(4x)/(5x) )=

lim_(x rarr 0) (3^(x)-2^(x))/x=

lim_(x rarr 0) (|x|)/(x) is equal to :

lim_(x rarr 0) (sin x^(o) )/x=

lim_(x rarr 0) (a^(x)-b^(x))/x =

lim_(x rarr oo) (1-2/x)^(x) =

lim_(x rarr 0) (1-ax)^(1/x) =

If f(x) is an odd function and lim_(x rarr 0) f(x) exists, then lim_(x rarr 0) f(x) is