Home
Class 12
MATHS
Given A = {x : (pi)/(6) le x le (pi)/( 3...

Given `A = {x : (pi)/(6) le x le (pi)/( 3)} and f(x) = cos x - x ( 1+ x )`. Find ` f (A)`.

Text Solution

Verified by Experts

Given, `A = { x : (pi)/(6) le x le (pi)/(3)}`
and ` f (x) = cos x - x - x ^(2)`
` rArr f ' (x) = - sin x - 1 - 2x = - (sin x + 1 + 2 x )`
which is negative for ` x in [ ( pi)/(6), (pi)/(3)]`
` therefore " " f ' (x) lt 0`
or ` f (x)` is decreasing.
Hence, ` f (A) = [ f((pi)/(3)), f ((pi)/(6))]`
` " " = [ (1)/(2) - (pi)/(3) ( 1+ (pi)/(3)) , (sqrt 3 ) /( 2)- (pi)/(6) ( 1 + (pi)/(6)]`
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    IIT JEE PREVIOUS YEAR|Exercise ROLLES AND LAGRANGES THEOREM (OBJECTIVE QUESTIONS I)|1 Videos
  • APPLICATION OF DERIVATIVES

    IIT JEE PREVIOUS YEAR|Exercise ROLLES AND LAGRANGES THEOREM (ASSERTION AND REASON )|1 Videos
  • APPLICATION OF DERIVATIVES

    IIT JEE PREVIOUS YEAR|Exercise RATE MEASURE, INCREASING AND DECREASING FUNCTIONS (MATCH THE COLUMNS )|4 Videos
  • 3D Geometry

    IIT JEE PREVIOUS YEAR|Exercise Equation of Plane Objective Question II (Integer Answer Type Question)|1 Videos
  • AREA

    IIT JEE PREVIOUS YEAR|Exercise AREA USING INTEGRATION|55 Videos

Similar Questions

Explore conceptually related problems

Verify Rolle's theorem for each of the following functions: (i) f(x) = sin^(2) x " in " 0 le x le pi (ii) f(x) = e^(x) cos x " in " - (pi)/(2) le x le (pi)/(2) (iii) f(x) = (sin x)/(e^(x)) " in " 0 le x le pi

The function f(x)=cos x, 0 le x le pi is

{:(f(x) = cos x and H_(1)(x) = min{f(t), 0 le t lt x},),(0 le x le (pi)/(2) = (pi)/(2)-x,(pi)/(2) lt x le pi),(f(x) = cos x and H_(2) (x) = max {f(t), o le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x","(pi)/(2) lt x le pi),(g(x) = sin x and H_(3)(x) = min{g(t),0 le t le x},),(0 le x le (pi)/(2)=(pi)/(2) - x, (pi)/(2) le x le pi),(g(x) = sin x and H_(4)(x) = max{g(t),0 le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x, (pi)/(2) lt x le pi):} Which of the following is true for H_(3) (x) ?

{:(f(x) = cos x and H_(1)(x) = min{f(t), 0 le t lt x},),(0 le x le (pi)/(2) = (pi)/(2)-x,(pi)/(2) lt x le pi),(f(x) = cos x and H_(2) (x) = max {f(t), o le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x","(pi)/(2) lt x le pi),(g(x) = sin x and H_(3)(x) = min{g(t),0 le t le x},),(0 le x le (pi)/(2)=(pi)/(2) - x, (pi)/(2) le x le pi),(g(x) = sin x and H_(4)(x) = max{g(t),0 le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x, (pi)/(2) lt x le pi):} Which of the following is true for H_(2) (x) ?

{:(f(x) = cos x and H_(1)(x) = min{f(t), 0 le t lt x},),(0 le x le (pi)/(2) = (pi)/(2)-x,(pi)/(2) lt x le pi),(f(x) = cos x and H_(2) (x) = max {f(t), o le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x","(pi)/(2) lt x le pi),(g(x) = sin x and H_(3)(x) = min{g(t),0 le t le x},),(0 le x le (pi)/(2)=(pi)/(2) - x, (pi)/(2) le x le pi),(g(x) = sin x and H_(4)(x) = max{g(t),0 le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x, (pi)/(2) lt x le pi):} Which of the following is true for H_(4)(x) ?

Let f(x) = [{:( sin (pi)/(2) x "," , 0 le x le 1) , (3 - 2x "," , x ge 1):} then

If f (x) =x ^(2) -6x + 9, 0 le x le 4, then f(3) =