Home
Class 10
MATHS
Simplify sin(A+45^(@))sin(A-45^(@))....

Simplify `sin(A+45^(@))sin(A-45^(@))`.

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \sin(A + 45^\circ) \sin(A - 45^\circ) \), we can use the product-to-sum identities in trigonometry. Here’s a step-by-step solution: ### Step 1: Use the Product-to-Sum Identity We can use the product-to-sum identity for sine functions: \[ \sin x \sin y = \frac{1}{2} [\cos(x - y) - \cos(x + y)] \] In our case, let \( x = A + 45^\circ \) and \( y = A - 45^\circ \). ### Step 2: Calculate \( x - y \) and \( x + y \) Now, we calculate: - \( x - y = (A + 45^\circ) - (A - 45^\circ) = 90^\circ \) - \( x + y = (A + 45^\circ) + (A - 45^\circ) = 2A \) ### Step 3: Substitute into the Identity Substituting these values into the product-to-sum formula gives: \[ \sin(A + 45^\circ) \sin(A - 45^\circ) = \frac{1}{2} [\cos(90^\circ) - \cos(2A)] \] ### Step 4: Simplify the Expression We know that \( \cos(90^\circ) = 0 \), so: \[ \sin(A + 45^\circ) \sin(A - 45^\circ) = \frac{1}{2} [0 - \cos(2A)] = -\frac{1}{2} \cos(2A) \] ### Final Result Thus, the simplified form of \( \sin(A + 45^\circ) \sin(A - 45^\circ) \) is: \[ -\frac{1}{2} \cos(2A) \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Essay type Questions|2 Videos
  • TRIGONOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Level 1|30 Videos
  • TRIGONOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Very Short Answer Type questions|30 Videos
  • TAXATION

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL 3|10 Videos

Similar Questions

Explore conceptually related problems

cos 45^(@)-sin 45^(@)=?

2sin45^(@)cos45^(@)

Value of sin(45^@+x)+sin(45^@-x)=

Evaluate sin45^(@)+cos45^(@)

cos (45 ^ (@) - A) cos (45 ^ (@) - B) -sin (45 ^ (@) - A) sin (45 ^ (@) - B) = sin (A + B)

Prove that: cos(45^(@)-A)cos(45^(@)-B)-sin(45^(@)-A)sin(45^(@)-B)=sin(A+B)

Prove that: i) sin(A+B)cos(A-B)-cos(A+B)sin(A-B)=sin2B ii) cos(45^(@)-A)cos(45^(@)-B)-sin(45^(@)-A)sin(45^(@)-B)=sin(A+B)

sin (45 ^ (@) + A) sin (45 ^ (@) - A) = (1) / (2) cos2A

Find the value of (cos(45^@-A))/(sin(45^@+A))