Home
Class 12
MATHS
Value of sin 47^(@) + sin 61^(@)- sin 11...

Value of `sin 47^(@) + sin 61^(@)- sin 11 ^(@)-sin 25 ^(@)` is

A

`cos 7 ^(@)`

B

`sin 7 ^(@)`

C

`sin 61^(@)`

D

`-sin 25 ^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin 47^\circ + \sin 61^\circ - \sin 11^\circ - \sin 25^\circ \), we can use the sine subtraction formula and some trigonometric identities. Here’s the step-by-step solution: ### Step 1: Group the Sine Terms We can group the terms in pairs: \[ (\sin 47^\circ - \sin 11^\circ) + (\sin 61^\circ - \sin 25^\circ) \] ### Step 2: Apply the Sine Subtraction Formula We will use the formula for the difference of sines: \[ \sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] #### For \( \sin 47^\circ - \sin 11^\circ \): Let \( A = 47^\circ \) and \( B = 11^\circ \): \[ \sin 47^\circ - \sin 11^\circ = 2 \cos\left(\frac{47^\circ + 11^\circ}{2}\right) \sin\left(\frac{47^\circ - 11^\circ}{2}\right) \] Calculating the averages: \[ \frac{47^\circ + 11^\circ}{2} = \frac{58^\circ}{2} = 29^\circ \] \[ \frac{47^\circ - 11^\circ}{2} = \frac{36^\circ}{2} = 18^\circ \] Thus, \[ \sin 47^\circ - \sin 11^\circ = 2 \cos(29^\circ) \sin(18^\circ) \] #### For \( \sin 61^\circ - \sin 25^\circ \): Let \( A = 61^\circ \) and \( B = 25^\circ \): \[ \sin 61^\circ - \sin 25^\circ = 2 \cos\left(\frac{61^\circ + 25^\circ}{2}\right) \sin\left(\frac{61^\circ - 25^\circ}{2}\right) \] Calculating the averages: \[ \frac{61^\circ + 25^\circ}{2} = \frac{86^\circ}{2} = 43^\circ \] \[ \frac{61^\circ - 25^\circ}{2} = \frac{36^\circ}{2} = 18^\circ \] Thus, \[ \sin 61^\circ - \sin 25^\circ = 2 \cos(43^\circ) \sin(18^\circ) \] ### Step 3: Combine the Results Now we can combine the results: \[ \sin 47^\circ + \sin 61^\circ - \sin 11^\circ - \sin 25^\circ = 2 \cos(29^\circ) \sin(18^\circ) + 2 \cos(43^\circ) \sin(18^\circ) \] Factoring out \( 2 \sin(18^\circ) \): \[ = 2 \sin(18^\circ) \left( \cos(29^\circ) + \cos(43^\circ) \right) \] ### Step 4: Use the Cosine Addition Formula Using the cosine addition formula: \[ \cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] Let \( A = 29^\circ \) and \( B = 43^\circ \): \[ \cos(29^\circ) + \cos(43^\circ) = 2 \cos\left(\frac{29^\circ + 43^\circ}{2}\right) \cos\left(\frac{29^\circ - 43^\circ}{2}\right) \] Calculating the averages: \[ \frac{29^\circ + 43^\circ}{2} = \frac{72^\circ}{2} = 36^\circ \] \[ \frac{29^\circ - 43^\circ}{2} = \frac{-14^\circ}{2} = -7^\circ \] Thus, \[ \cos(29^\circ) + \cos(43^\circ) = 2 \cos(36^\circ) \cos(-7^\circ) = 2 \cos(36^\circ) \cos(7^\circ) \] ### Step 5: Substitute Back Now substituting back: \[ \sin 47^\circ + \sin 61^\circ - \sin 11^\circ - \sin 25^\circ = 2 \sin(18^\circ) \cdot 2 \cos(36^\circ) \cos(7^\circ) \] \[ = 4 \sin(18^\circ) \cos(36^\circ) \cos(7^\circ) \] ### Step 6: Final Simplification Using the identity \( \sin(18^\circ) = \frac{\sqrt{5}-1}{4} \) and \( \cos(36^\circ) = \frac{\sqrt{5}+1}{4} \): \[ = 4 \cdot \frac{\sqrt{5}-1}{4} \cdot \frac{\sqrt{5}+1}{4} \cdot \cos(7^\circ) \] \[ = (\sqrt{5}-1)(\sqrt{5}+1) \cdot \cos(7^\circ) \] \[ = (5 - 1) \cdot \cos(7^\circ) = 4 \cos(7^\circ) \] Thus, the final answer is: \[ \sin 47^\circ + \sin 61^\circ - \sin 11^\circ - \sin 25^\circ = 4 \cos(7^\circ) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE-2|30 Videos
  • TRIGONOMETRIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE-2|30 Videos
  • THREE DIMENSIONAL GEOMETRY

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos

Similar Questions

Explore conceptually related problems

sin47^(@)+sin61^(@)-sin11^(@)-sin25^(@)=

The value of sin 10^(@) sin 30^(@) sin 50^(@) sin 70^(@) is equal to .

The value of sin 10^(@) sin 30^(@) sin 50^(@) sin 70^(@) is

Show that sin47^(@)+sin61^(@)-sin11^(@)-sin25^(@)=cos7^(@)

The value of sin 50^(@) - sin 70^(@) + sin 10^(@) is

DISHA PUBLICATION-TRIGONOMETRIC FUNCTIONS -EXERCISE-1
  1. Prove : 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0.

    Text Solution

    |

  2. The value of tan 3 A - tan A is equal to

    Text Solution

    |

  3. Value of sin 47^(@) + sin 61^(@)- sin 11 ^(@)-sin 25 ^(@) is

    Text Solution

    |

  4. f(x)=(sin x^(7)) e^(x^(5)). Sgn( x^(9)) is:

    Text Solution

    |

  5. The value of (cot 54^(@))/(tan 36^(@)) + (tan 20^(@))/(cot 70^(@)) is

    Text Solution

    |

  6. If n=pi/(4alpha), then tanalpha tan 2alpha tan 3 alpha........tan(2n-1...

    Text Solution

    |

  7. Value of 2 sin ^(2) "" (pi)/(6) + cosec ^(2) "" (7pi)/(6) .cos^(2) "" ...

    Text Solution

    |

  8. If cos7theta=costheta-sin4theta, then the general value of theta is

    Text Solution

    |

  9. General solution of tan 5 theta =

    Text Solution

    |

  10. If cos theta + cos 2 theta + cos 3 theta = 0 then the general value ...

    Text Solution

    |

  11. Domain of the function f (x) = sqrt ((1)/( sin x )-1) is

    Text Solution

    |

  12. The solution of tan ^(2) 9x = cos 2x -1 is

    Text Solution

    |

  13. The number of points of intersection of the two curves y=2 sin x and...

    Text Solution

    |

  14. If sqrt3tan2theta+sqrt(3)tan3theta+tan2thetatan3theta=1 then the gener...

    Text Solution

    |

  15. If sin(pi cos theta) = cos(pi sin theta), then of the value cos(th...

    Text Solution

    |

  16. The number of solutions of the equation sin((pix)/(2sqrt3))=x^2-2sqrt3...

    Text Solution

    |

  17. If : sin 5x + sin 3x + sin x = 0, where 0 lt x le (pi)/2, then : x =

    Text Solution

    |

  18. the general solution of sin^2thetasectheta+sqrt3 tantheta=0 is

    Text Solution

    |

  19. The solution set of the system of equations x+y=(2pi)/3,cosx+cosy=3/2,...

    Text Solution

    |

  20. The number of points of intersection of the curves 2y =1 " and " y = "...

    Text Solution

    |