Home
Class 12
MATHS
Value of 2 sin ^(2) "" (pi)/(6) + cosec ...

Value of `2 sin ^(2) "" (pi)/(6) + cosec ^(2) "" (7pi)/(6) .cos^(2) "" (pi)/(3) is (m)/(m-1).` The value of 'm' is

A

3

B

2

C

4

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \(2 \sin^2 \left(\frac{\pi}{6}\right) + \csc^2 \left(\frac{7\pi}{6}\right) \cdot \cos^2 \left(\frac{\pi}{3}\right)\) and express it in the form \(\frac{m}{m-1}\) to find the value of \(m\). ### Step 1: Calculate \( \sin^2 \left(\frac{\pi}{6}\right) \) We know that: \[ \sin \left(\frac{\pi}{6}\right) = \frac{1}{2} \] Thus, \[ \sin^2 \left(\frac{\pi}{6}\right) = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] ### Step 2: Calculate \( 2 \sin^2 \left(\frac{\pi}{6}\right) \) Now, substituting the value we found: \[ 2 \sin^2 \left(\frac{\pi}{6}\right) = 2 \cdot \frac{1}{4} = \frac{1}{2} \] ### Step 3: Calculate \( \csc^2 \left(\frac{7\pi}{6}\right) \) First, we need to find \(\sin \left(\frac{7\pi}{6}\right)\): \[ \frac{7\pi}{6} = \pi + \frac{\pi}{6} \] In the third quadrant, \(\sin\) is negative, so: \[ \sin \left(\frac{7\pi}{6}\right) = -\sin \left(\frac{\pi}{6}\right) = -\frac{1}{2} \] Thus, \[ \csc \left(\frac{7\pi}{6}\right) = \frac{1}{\sin \left(\frac{7\pi}{6}\right)} = \frac{1}{-\frac{1}{2}} = -2 \] Therefore, \[ \csc^2 \left(\frac{7\pi}{6}\right) = (-2)^2 = 4 \] ### Step 4: Calculate \( \cos^2 \left(\frac{\pi}{3}\right) \) We know that: \[ \cos \left(\frac{\pi}{3}\right) = \frac{1}{2} \] Thus, \[ \cos^2 \left(\frac{\pi}{3}\right) = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] ### Step 5: Combine all parts of the expression Now, we can substitute these values back into the original expression: \[ 2 \sin^2 \left(\frac{\pi}{6}\right) + \csc^2 \left(\frac{7\pi}{6}\right) \cdot \cos^2 \left(\frac{\pi}{3}\right) = \frac{1}{2} + 4 \cdot \frac{1}{4} \] Calculating the second term: \[ 4 \cdot \frac{1}{4} = 1 \] Thus, the expression simplifies to: \[ \frac{1}{2} + 1 = \frac{1}{2} + \frac{2}{2} = \frac{3}{2} \] ### Step 6: Set the expression equal to \(\frac{m}{m-1}\) We have: \[ \frac{3}{2} = \frac{m}{m-1} \] ### Step 7: Cross-multiply to solve for \(m\) Cross-multiplying gives: \[ 3(m-1) = 2m \] Expanding this, we have: \[ 3m - 3 = 2m \] Rearranging gives: \[ 3m - 2m = 3 \implies m = 3 \] ### Final Answer The value of \(m\) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE-2|30 Videos
  • TRIGONOMETRIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE-2|30 Videos
  • THREE DIMENSIONAL GEOMETRY

    DISHA PUBLICATION|Exercise Exercise -2 : Concept Applicator|30 Videos
  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos

Similar Questions

Explore conceptually related problems

2sin^(2)((pi)/(6))+cos ec^(2)(7(pi)/(6))(cos^(2)pi)/(3)=(3)/(2)

Prove that: 2sin^(2)(pi)/(6)+csc^(2)(7 pi)/(6)cos^(2)(pi)/(3)=(3)/(2)

The value of sin^(-1)(sin""(2pi)/(3))+cos^(-1)(cos""(7pi)/(6)) is

The value of cos^(2)0+sin^(2)((pi)/(6))+tan^(2)((pi)/(3))+cosec^(2)((pi)/(2)) is

sin ^ (2) ((pi) / (6)) + cos ^ (2) ((pi) / (3)) - tan ^ (2) ((pi) / (4)) = - (1) / (2)

2(sin^(2)(pi/6)) +"cosec"(7pi)/(6)cos^(2)pi/3=3/2

Find the value of the sin^(2)((pi)/(6))+cos^(2)((pi)/(3))-tan^(2)((pi)/(4))

2sin^(2)(pi/6)+cosec((7 pi)/6)cos^(2)(pi/3)=?

Value of expression sin^(2)(pi)/(6)+cos^(2)(pi)/(4)-sec(pi)/(3) is

DISHA PUBLICATION-TRIGONOMETRIC FUNCTIONS -EXERCISE-1
  1. The value of (cot 54^(@))/(tan 36^(@)) + (tan 20^(@))/(cot 70^(@)) is

    Text Solution

    |

  2. If n=pi/(4alpha), then tanalpha tan 2alpha tan 3 alpha........tan(2n-1...

    Text Solution

    |

  3. Value of 2 sin ^(2) "" (pi)/(6) + cosec ^(2) "" (7pi)/(6) .cos^(2) "" ...

    Text Solution

    |

  4. If cos7theta=costheta-sin4theta, then the general value of theta is

    Text Solution

    |

  5. General solution of tan 5 theta =

    Text Solution

    |

  6. If cos theta + cos 2 theta + cos 3 theta = 0 then the general value ...

    Text Solution

    |

  7. Domain of the function f (x) = sqrt ((1)/( sin x )-1) is

    Text Solution

    |

  8. The solution of tan ^(2) 9x = cos 2x -1 is

    Text Solution

    |

  9. The number of points of intersection of the two curves y=2 sin x and...

    Text Solution

    |

  10. If sqrt3tan2theta+sqrt(3)tan3theta+tan2thetatan3theta=1 then the gener...

    Text Solution

    |

  11. If sin(pi cos theta) = cos(pi sin theta), then of the value cos(th...

    Text Solution

    |

  12. The number of solutions of the equation sin((pix)/(2sqrt3))=x^2-2sqrt3...

    Text Solution

    |

  13. If : sin 5x + sin 3x + sin x = 0, where 0 lt x le (pi)/2, then : x =

    Text Solution

    |

  14. the general solution of sin^2thetasectheta+sqrt3 tantheta=0 is

    Text Solution

    |

  15. The solution set of the system of equations x+y=(2pi)/3,cosx+cosy=3/2,...

    Text Solution

    |

  16. The number of points of intersection of the curves 2y =1 " and " y = "...

    Text Solution

    |

  17. If pn = cos^n theta + sin^n theta then pn - p(n-2) = k p(n-4) where k

    Text Solution

    |

  18. In the interval [-pi/2,pi/2] the equation log(sin theta)(cos 2 theta)=...

    Text Solution

    |

  19. In a triangle tan A+ tan B + tan C=6 and tan A tan B= 2, then the valu...

    Text Solution

    |

  20. In triangle ABC, /C=90^@ then (a^2-b^2)/(a^2+b^2)=

    Text Solution

    |