Home
Class 12
MATHS
For all n in N, 3.5^(2n+1)+ 2^(3n+1) is...

For all `n in N, 3.5^(2n+1)+ 2^(3n+1)` is divisble by-

A

19

B

17

C

23

D

25

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL INDUCTION

    DISHA PUBLICATION|Exercise Exercise-2 Concept Applicator|20 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    DISHA PUBLICATION|Exercise Exercise-2 Concept Applicator|20 Videos
  • MATRICES

    DISHA PUBLICATION|Exercise Exercise 2: Concept Applicator|30 Videos
  • PROBABILITY -2

    DISHA PUBLICATION|Exercise EXERCISE - 2 : CONCEPT APPLICATOR|30 Videos

Similar Questions

Explore conceptually related problems

For each n in N, 3.(5^(2n+1))+2^(3n+1) is divisible by

For all n inN,3*5^(2n+1)+2^(3n+1) is divisible by (A) 19 (B) 17 (C) 23 (D) 25

For all n in N, 3^(3n)-26^(n)-1 is divisible by

Prove the following by using the Principle of mathematical induction AA n in N 2^(3n-1) is divisble by 7.

Prove the following by using the Principle of mathematical induction AA n in N Given that 5^(n)-5 is divisble by 4 AA n in N .Prove that 2.7^(n)+3.5^(n)-5 is a multiple of 24.

Prove the following by the principle of mathematical induction: 7^(2n)+2^(3n-3)*3^(n-1) is divisible 25 for all n in N

Let P(n) :n(n+1) (n+2) is divisble by 3. What is P(3)?

Prove by induction that the sum S_(n)=n^(3)+2n^(2)+5n+3 is divisible by 3 for all n in N.

Show that and only one out of n, n+2 , n+4, is divisble by, 3 , where n is any postivie integer.

DISHA PUBLICATION-PRINCIPLE OF MATHEMATICAL INDUCTION-Exercise-1 Concept Builder
  1. Let P(n):n^2+n+1 is an even integer. If P(k) is assumed true=>P(k+1) i...

    Text Solution

    |

  2. Principle of mathematical induction is used

    Text Solution

    |

  3. For each n in N, the correct statement is

    Text Solution

    |

  4. If n is a natural number then ((n+1)/2)^n ge n! is true when

    Text Solution

    |

  5. For natural number n , 2^n (n-1)!lt n^n , if

    Text Solution

    |

  6. If P(n):2nltn!,ninN then P(n) is true for all le . . . . . . . . . .

    Text Solution

    |

  7. If 4^n/(n+1) lt ((2n)!)/((n!)^2), then P(n) is true for

    Text Solution

    |

  8. For every positive integral value of n, 3 ^(n) gt n^(3) when

    Text Solution

    |

  9. If x gt -1 , then the statement (1+x)^n gt 1 +nx is true for

    Text Solution

    |

  10. For all positive integral values of n, 3^(2n)-2n+1 is divisible by

    Text Solution

    |

  11. For every natural number n, n(n^2-1) is divisible by

    Text Solution

    |

  12. Prove the following by the principle of mathematical induction:\ 2....

    Text Solution

    |

  13. The remainder when 5^(4n) is divided by 13, is

    Text Solution

    |

  14. 10^n+3(4^(n+2))+5 is divisible by (n in N)

    Text Solution

    |

  15. If P(n) is the statement n^3+n is divisible 3 is the statement P(3) tr...

    Text Solution

    |

  16. For all n in N, 3.5^(2n+1)+ 2^(3n+1) is divisble by-

    Text Solution

    |

  17. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  18. The greatest positive integer , which divides (n+1)(n+2)(n+3)…(n+r) fo...

    Text Solution

    |

  19. Prove the following by using the Principle of mathematical induction A...

    Text Solution

    |

  20. For every positive integer n, prove that 7^n-3^nis divisible by 4.

    Text Solution

    |