Home
Class 12
MATHS
Prove the following by using the princip...

Prove the following by using the principle of mathematical induction for all `n in N`:`1. 3+2. 3^2+3. 3^3+dotdotdot+n .3^n=((2n-1)3^(n+1)+3)/4`

A

`((2n+1)3^(n+1)+3)/4`

B

`((2n-1)3^(n+1)+3)/4`

C

`((2n+1)3^n+3)/4`

D

`((2n-1)3^n+1)/4`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL INDUCTION

    DISHA PUBLICATION|Exercise Exercise-1 Concept Builder|25 Videos
  • MATRICES

    DISHA PUBLICATION|Exercise Exercise 2: Concept Applicator|30 Videos
  • PROBABILITY -2

    DISHA PUBLICATION|Exercise EXERCISE - 2 : CONCEPT APPLICATOR|30 Videos

Similar Questions

Explore conceptually related problems

Prove the following by using the principle of mathematical induction for all n in Nvdots(2n+7)<(n+3)^(2)

Prove the following by using the Principle of mathematical induction AA n in N 2^(n+1)>2n+1

Prove the following by using the Principle of mathematical induction AA n in N 3^(n)>2^(n)

Prove the following by using the principle of mathematical induction for all n in Nvdots1.3+2.3^(2)+3.3^(3)+...+n.3^(n)=((2n-1)3^(n+1)+3)/(4)

Prove the following by using the Principle of mathematical induction AA n in N 2^(n+3)le(n+3)!

Prove the following by the principle of mathematical induction: 1+2+2^(7)=2^(n+1)-1 for all n in N

Prove the following by using the Principle of mathematical induction AA n in N 2^(3n-1) is divisble by 7.

Prove the following by using the principle of mathematical induction for all n in Nvdots1.2+2.2^(2)+3.2^(2)+...+n.2^(n)=(n-1)2^(n+1)+2

Prove the following by using the principle of mathematical induction for all n in Nvdots1+3+3^(2)+...+3^(n-1)=((3^(n)-1))/(2)

Prove the following by using the principle of mathematical induction for all n in Nvdotsn(n+1)(n+5) is a multiple of 3.

DISHA PUBLICATION-PRINCIPLE OF MATHEMATICAL INDUCTION-Exercise-2 Concept Applicator
  1. For all ngeq1, prove that 1/(1. 2)+1/(2. 3)+1/(3. 4)+dotdotdot+1/(n(n+...

    Text Solution

    |

  2. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  3. If n in N , then the number (2+sqrt3)^n+(2-sqrt3)^n is

    Text Solution

    |

  4. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  5. Show by the Principle of Mathematical induction that the sum Sn, of th...

    Text Solution

    |

  6. If P(n0: 49^n+16^n+lambda is divisible by 64 for n N is true, then th...

    Text Solution

    |

  7. Prove the rule of exponents (a b)^n=a^n b^nby using principle of mathe...

    Text Solution

    |

  8. 1 1^(n+2)+1 2^(2n+1) is divisible by 133.

    Text Solution

    |

  9. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  10. 4 1^n-1 4^n is a multiple of 27

    Text Solution

    |

  11. Using the principle of mathematical induction prove that 1/(1. 2. ...

    Text Solution

    |

  12. x^(2n-1)+y^(2n-1) is divisible by x+y

    Text Solution

    |

  13. When 2^301 is divided by 5, the least positive remainder is

    Text Solution

    |

  14. If n is a positive integer, then 2.4^(2n+1)+3^(3n+1) is divisible by :

    Text Solution

    |

  15. 5^(2n+2)-24n+25 is divisible by 576

    Text Solution

    |

  16. Prove the following by the principle of mathematical induction: \ x...

    Text Solution

    |

  17. If P(n0: 49^n+16^n+lambda is divisible by 64 for n N is true, then th...

    Text Solution

    |

  18. If n is any odd number greater than 1, then n\ (n^2-1) is divisible b...

    Text Solution

    |

  19. 1/n+1/(n+1)+1/(n+2)++1/(2n-1)=1-1/2+1/3-1/4++1/(2n-1)

    Text Solution

    |

  20. Show using mathematical induciton that n!lt ((n+1)/(2))^n. Where n in ...

    Text Solution

    |