Home
Class 12
MATHS
Prove the following by the principle of ...

Prove the following by the principle of mathematical induction: `\ x^(2n-1)+y^(2n-1)` is divisible by `x+y` for all `n in Ndot`

A

x

B

x+1

C

`x^2+x+1`

D

`x^2-x+1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL INDUCTION

    DISHA PUBLICATION|Exercise Exercise-1 Concept Builder|25 Videos
  • MATRICES

    DISHA PUBLICATION|Exercise Exercise 2: Concept Applicator|30 Videos
  • PROBABILITY -2

    DISHA PUBLICATION|Exercise EXERCISE - 2 : CONCEPT APPLICATOR|30 Videos

Similar Questions

Explore conceptually related problems

Prove the following by the principle of mathematical induction: 7^(2n)+2^(3n-3)*3^(n-1) is divisible 25 for all n in N

Prove the following by using the Principle of mathematical induction AA n in N 2^(3n-1) is divisble by 7.

Prove the following by the principle of mathematical induction: 5^(n)-1 is divisible by 24 for all n in N.

Prove the following by the principle of mathematical induction: 3^(n)+7 is divisible by 8 for all n in N.

Prove the following by the principle of mathematical induction: 11^(n+2)+12^(2n+1) is divisible 133 for all n in N.

Prove the following by the principle of mathematical induction: 3^(2n+2)-8n-9 is divisible 8 for all n in N.

Prove the following by the principle of mathematical induction: 1+3+3^(2)++3^(n-1)=(3^(n)-1)/(2)

Using principle of mathematical induction prove that x^(2n)-y^(2n) is divisible by x+y for all nN.

Prove the following by using the Principle of mathematical induction AA n in N 4^(n) +15n-1 is divisble by 9.

Prove the following by using the Principle of mathematical induction AA n in N 3^(n)>2^(n)

DISHA PUBLICATION-PRINCIPLE OF MATHEMATICAL INDUCTION-Exercise-2 Concept Applicator
  1. For all ngeq1, prove that 1/(1. 2)+1/(2. 3)+1/(3. 4)+dotdotdot+1/(n(n+...

    Text Solution

    |

  2. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  3. If n in N , then the number (2+sqrt3)^n+(2-sqrt3)^n is

    Text Solution

    |

  4. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  5. Show by the Principle of Mathematical induction that the sum Sn, of th...

    Text Solution

    |

  6. If P(n0: 49^n+16^n+lambda is divisible by 64 for n N is true, then th...

    Text Solution

    |

  7. Prove the rule of exponents (a b)^n=a^n b^nby using principle of mathe...

    Text Solution

    |

  8. 1 1^(n+2)+1 2^(2n+1) is divisible by 133.

    Text Solution

    |

  9. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  10. 4 1^n-1 4^n is a multiple of 27

    Text Solution

    |

  11. Using the principle of mathematical induction prove that 1/(1. 2. ...

    Text Solution

    |

  12. x^(2n-1)+y^(2n-1) is divisible by x+y

    Text Solution

    |

  13. When 2^301 is divided by 5, the least positive remainder is

    Text Solution

    |

  14. If n is a positive integer, then 2.4^(2n+1)+3^(3n+1) is divisible by :

    Text Solution

    |

  15. 5^(2n+2)-24n+25 is divisible by 576

    Text Solution

    |

  16. Prove the following by the principle of mathematical induction: \ x...

    Text Solution

    |

  17. If P(n0: 49^n+16^n+lambda is divisible by 64 for n N is true, then th...

    Text Solution

    |

  18. If n is any odd number greater than 1, then n\ (n^2-1) is divisible b...

    Text Solution

    |

  19. 1/n+1/(n+1)+1/(n+2)++1/(2n-1)=1-1/2+1/3-1/4++1/(2n-1)

    Text Solution

    |

  20. Show using mathematical induciton that n!lt ((n+1)/(2))^n. Where n in ...

    Text Solution

    |