Home
Class 12
MATHS
The least positive integer n for which (...

The least positive integer n for which `((1+i sqrt3)/(1-isqrt3))^(n)=1,` is

A

2

B

6

C

5

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the least positive integer \( n \) such that \[ \left(\frac{1 + i\sqrt{3}}{1 - i\sqrt{3}}\right)^n = 1. \] ### Step 1: Simplify the expression First, we simplify the expression inside the parentheses: \[ \frac{1 + i\sqrt{3}}{1 - i\sqrt{3}}. \] To do this, we multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{(1 + i\sqrt{3})(1 + i\sqrt{3})}{(1 - i\sqrt{3})(1 + i\sqrt{3})}. \] ### Step 2: Calculate the denominator The denominator can be simplified as follows: \[ (1 - i\sqrt{3})(1 + i\sqrt{3}) = 1^2 - (i\sqrt{3})^2 = 1 - (-3) = 1 + 3 = 4. \] ### Step 3: Calculate the numerator Now, we calculate the numerator: \[ (1 + i\sqrt{3})(1 + i\sqrt{3}) = 1^2 + 2(1)(i\sqrt{3}) + (i\sqrt{3})^2 = 1 + 2i\sqrt{3} - 3 = -2 + 2i\sqrt{3}. \] ### Step 4: Combine the results Now we can combine the results: \[ \frac{-2 + 2i\sqrt{3}}{4} = \frac{-1 + i\sqrt{3}}{2}. \] ### Step 5: Rewrite the expression Thus, we have: \[ \frac{1 + i\sqrt{3}}{1 - i\sqrt{3}} = \frac{-1 + i\sqrt{3}}{2}. \] ### Step 6: Convert to polar form Next, we convert \(\frac{-1 + i\sqrt{3}}{2}\) to polar form. The modulus \( r \) is given by: \[ r = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1. \] The argument \( \theta \) can be calculated as: \[ \theta = \tan^{-1}\left(\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}\right) = \tan^{-1}(-\sqrt{3}). \] This angle corresponds to \( \frac{2\pi}{3} \) in the second quadrant. ### Step 7: Write in polar form Thus, we can write: \[ \frac{-1 + i\sqrt{3}}{2} = e^{i\frac{2\pi}{3}}. \] ### Step 8: Raise to the power of \( n \) Now we have: \[ \left(e^{i\frac{2\pi}{3}}\right)^n = e^{i2\pi k} \quad \text{for some integer } k. \] This implies: \[ n \cdot \frac{2\pi}{3} = 2\pi k. \] ### Step 9: Solve for \( n \) Dividing both sides by \( 2\pi \): \[ \frac{n}{3} = k \implies n = 3k. \] The smallest positive integer \( n \) occurs when \( k = 1 \): \[ n = 3. \] ### Final Answer Thus, the least positive integer \( n \) for which \[ \left(\frac{1 + i\sqrt{3}}{1 - i\sqrt{3}}\right)^n = 1 \] is \[ \boxed{3}. \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-1: Concept Builder (Topic -1)|15 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-1: Concept Builder (Topic -2)|10 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 27|15 Videos
  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

The least positive integer n for which ((1+sqrt(3)i)/(1-sqrt(3)i))^(n) = 1 , is

The smallest positive integer n for which ((1 + i)/(1-i))^(n) = -1 is :

What is the least positive integer n for which ((1+i)/(1-i))^(n)=1 ?

The last positive integer n for which ((1+i)/(1-i))^(n) is real, is

(sqrt3+i)/(-1-isqrt3)=?

Find the least positive integer n foe which ((1+i)/(1-i))^(n)=1 .

DISHA PUBLICATION-COMPLEX NUMBERS AND QUADRATIC EQUATIONS -Exercise -2 : Concept Applicator
  1. The least positive integer n for which ((1+i sqrt3)/(1-isqrt3))^(n)=1,...

    Text Solution

    |

  2. If z1=sqrt2 (cospi/4+isin(pi/4)) and z2=sqrt3(cospi/3+isin(pi/3)) then...

    Text Solution

    |

  3. If x+iy=3/(2+costheta +i sin theta), then show that x^2+y^2=4x-3

    Text Solution

    |

  4. Write the complex number z = (i-1)/(cos pi/3 + i sin pi/3)in polar fo...

    Text Solution

    |

  5. A variable complex number z=x+iy is such that arg(z-1)/(z+1)= pi/2. S...

    Text Solution

    |

  6. If arg(z) lt 0, then find arg(-z) -arg(z).

    Text Solution

    |

  7. If f(z)=(7-z)/(1-z^2) , where z=1+2i , then |f(z)| is (|z|)/2 (b) |z| ...

    Text Solution

    |

  8. If z=x+i y, z^(1/3)=a-i b " and " x/a-y/b=lambda(a^2-b^2), then lambda...

    Text Solution

    |

  9. Amplitude of (1+sqrt3i)/(sqrt3+1)is

    Text Solution

    |

  10. If z=(3-i)/(2+i)+(3+i)/(2-i) then value of arg (zi) is

    Text Solution

    |

  11. If (y^2-5y+3)(x 62+x+1)<2x for all x in R , then fin the interval in ...

    Text Solution

    |

  12. Let x+1/x=1 and a, b and c are distict positive integer such that (x^(...

    Text Solution

    |

  13. If z=(3+7i)(a+ib), where a, b in Z-{0}, is purely imaginery, then mini...

    Text Solution

    |

  14. The value of lambda for which the sum of squares of roots of the equat...

    Text Solution

    |

  15. The set of all real numbers x for which x^2-|x+2| +x gt 0 is

    Text Solution

    |

  16. If alpha,beta are the roots of the equation ax^2+ bx +c =0, then alp...

    Text Solution

    |

  17. If log(1/2) ((x^2+6x+9)/(2(x+1)) )< - log2(x+1) then complete set of v...

    Text Solution

    |

  18. Solve: x^(2) + 2 = 0

    Text Solution

    |

  19. If a<b<c<d , then the roots of the equation (x-a)(x-c)+2(x-b)(x-d)=0 a...

    Text Solution

    |

  20. If the cube roots of unity are 1,w w^2,then the roots of the equation ...

    Text Solution

    |

  21. Find t values of the parameter a such that the rots alpha,beta of the ...

    Text Solution

    |