Home
Class 12
MATHS
The fourth root of 1/2 +isqrt3/2 is...

The fourth root of `1/2 +isqrt3/2` is

A

`cis ""pi/(12)`

B

`"cis "pi/2`

C

`"cis "pi/6`

D

`"cis "pi/3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the fourth root of the complex number \( \frac{1}{2} + i\frac{\sqrt{3}}{2} \), we can follow these steps: ### Step 1: Convert the complex number to polar form The complex number can be expressed in polar form as \( r(\cos \theta + i \sin \theta) \), where \( r \) is the modulus and \( \theta \) is the argument. 1. **Calculate the modulus \( r \)**: \[ r = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1 \] 2. **Calculate the argument \( \theta \)**: \[ \theta = \tan^{-1}\left(\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}\right) = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \] Thus, we can express the complex number in polar form: \[ \frac{1}{2} + i\frac{\sqrt{3}}{2} = 1 \left( \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right) = e^{i \frac{\pi}{3}} \] ### Step 2: Find the fourth root To find the fourth root of \( z = e^{i \frac{\pi}{3}} \), we use the formula for the \( n \)-th roots of a complex number: \[ z^{\frac{1}{n}} = r^{\frac{1}{n}} \left( \cos\left(\frac{\theta + 2k\pi}{n}\right) + i \sin\left(\frac{\theta + 2k\pi}{n}\right) \right) \] where \( k = 0, 1, 2, \ldots, n-1 \). For our case: - \( n = 4 \) - \( r = 1 \) - \( \theta = \frac{\pi}{3} \) Thus, the fourth roots are given by: \[ z^{\frac{1}{4}} = 1^{\frac{1}{4}} \left( \cos\left(\frac{\frac{\pi}{3} + 2k\pi}{4}\right) + i \sin\left(\frac{\frac{\pi}{3} + 2k\pi}{4}\right) \right) \] ### Step 3: Calculate the roots for \( k = 0, 1, 2, 3 \) 1. For \( k = 0 \): \[ z_0 = \cos\left(\frac{\frac{\pi}{3}}{4}\right) + i \sin\left(\frac{\frac{\pi}{3}}{4}\right) = \cos\left(\frac{\pi}{12}\right) + i \sin\left(\frac{\pi}{12}\right) \] 2. For \( k = 1 \): \[ z_1 = \cos\left(\frac{\frac{\pi}{3} + 2\pi}{4}\right) + i \sin\left(\frac{\frac{\pi}{3} + 2\pi}{4}\right) = \cos\left(\frac{7\pi}{12}\right) + i \sin\left(\frac{7\pi}{12}\right) \] 3. For \( k = 2 \): \[ z_2 = \cos\left(\frac{\frac{\pi}{3} + 4\pi}{4}\right) + i \sin\left(\frac{\frac{\pi}{3} + 4\pi}{4}\right) = \cos\left(\frac{13\pi}{12}\right) + i \sin\left(\frac{13\pi}{12}\right) \] 4. For \( k = 3 \): \[ z_3 = \cos\left(\frac{\frac{\pi}{3} + 6\pi}{4}\right) + i \sin\left(\frac{\frac{\pi}{3} + 6\pi}{4}\right) = \cos\left(\frac{19\pi}{12}\right) + i \sin\left(\frac{19\pi}{12}\right) \] ### Final Answer The fourth roots of \( \frac{1}{2} + i\frac{\sqrt{3}}{2} \) are: - \( z_0 = \cos\left(\frac{\pi}{12}\right) + i \sin\left(\frac{\pi}{12}\right) \) - \( z_1 = \cos\left(\frac{7\pi}{12}\right) + i \sin\left(\frac{7\pi}{12}\right) \) - \( z_2 = \cos\left(\frac{13\pi}{12}\right) + i \sin\left(\frac{13\pi}{12}\right) \) - \( z_3 = \cos\left(\frac{19\pi}{12}\right) + i \sin\left(\frac{19\pi}{12}\right) \)
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-1: Concept Builder (Topic -3)|19 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-1: Concept Builder (Topic -4)|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-1: Concept Builder (Topic -1)|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 27|15 Videos
  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

The fourth root of 24010000 is

Find the fourth roots of -16i.

Write the polar form of -(1)/(2)-(isqrt3)/2 (Where, i=sqrt(-1)).

If the fourth roots of unity are z_(1),z_(2),z_(3),z_(4) and z_(1)^(2)+z_(2)^(2)+z_(3)^(2)+z_(4)^(2) is equal to :

If a is a non-real fourth root of unity, then the value of alpha^(4n-1)+alpha^(4n-2)+alpha^(4n-3), n in N is