Home
Class 12
MATHS
If i z^4+1=0, then prove that z can take...

If `i z^4+1=0,` then prove that `z` can take the value `cospi//8+is inpi//8.`

A

`(1+i)/(sqrt2)`

B

`cos""pi/8+I sin ""pi/8`

C

`(1)/(4i)`

D

i

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-1: Concept Builder (Topic -3)|19 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-1: Concept Builder (Topic -4)|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-1: Concept Builder (Topic -1)|15 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 27|15 Videos
  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

If iz^(4)+1=0, then prove that z can take the value cos pi/8+i sin pi/8

If z^(4)=i, then z can take the value

If z_(4)+1=0,"where"i=sqrt(-1) then z can take the value

If z=cospi/4+isinpi/6 then

If |z + i| = |z - i|, prove that z is real.

If |z-1| + |z + 3| le 8 , then prove that z lies on the circle.

If |z-1| <3 , prove that |iz+3-5i| < 8 .

If |z-1|+|z+3|<=8, then the range of values of |z-4| is

If z be a complex number satisfying |z-4+8i|=4 , then the least and the greatest value of |z+2| are respectively (where i=sqrt(-i) )