Home
Class 12
MATHS
If alpha, beta are real and alpha^(2), b...

If `alpha, beta` are real and `alpha^(2), beta^(2)` are the roots of the equation `a^(2)x^(2)-x+1-a^(2)=0 (1/sqrt2 lt a lt 1) and beta^(2) ne 1," then "beta^(2)=`

A

`a^(2)`

B

`(1-a^(2))/(a^(2))`

C

`1-a^(2)`

D

`1+a^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \beta^2 \) given that \( \alpha^2 \) and \( \beta^2 \) are the roots of the quadratic equation: \[ a^2 x^2 - x + (1 - a^2) = 0 \] where \( \frac{1}{\sqrt{2}} < a < 1 \) and \( \beta^2 \neq 1 \). ### Step 1: Identify the coefficients of the quadratic equation The quadratic equation can be expressed in the standard form \( Ax^2 + Bx + C = 0 \) where: - \( A = a^2 \) - \( B = -1 \) - \( C = 1 - a^2 \) ### Step 2: Use the sum and product of roots For a quadratic equation \( Ax^2 + Bx + C = 0 \): - The sum of the roots \( \alpha^2 + \beta^2 = -\frac{B}{A} = \frac{1}{a^2} \) - The product of the roots \( \alpha^2 \beta^2 = \frac{C}{A} = \frac{1 - a^2}{a^2} \) ### Step 3: Express \( \alpha^2 \) in terms of \( \beta^2 \) From the sum of roots: \[ \alpha^2 + \beta^2 = \frac{1}{a^2} \] We can express \( \alpha^2 \) as: \[ \alpha^2 = \frac{1}{a^2} - \beta^2 \] ### Step 4: Substitute \( \alpha^2 \) into the product of roots Now substitute \( \alpha^2 \) into the product of roots: \[ \left(\frac{1}{a^2} - \beta^2\right) \beta^2 = \frac{1 - a^2}{a^2} \] ### Step 5: Expand and rearrange the equation Expanding the left-hand side gives: \[ \frac{\beta^2}{a^2} - \beta^4 = \frac{1 - a^2}{a^2} \] Multiplying through by \( a^2 \) to eliminate the denominator: \[ \beta^2 - a^2 \beta^4 = 1 - a^2 \] Rearranging this gives: \[ a^2 \beta^4 - \beta^2 + (1 - a^2) = 0 \] ### Step 6: Let \( y = \beta^2 \) and rewrite the equation Let \( y = \beta^2 \): \[ a^2 y^2 - y + (1 - a^2) = 0 \] ### Step 7: Apply the quadratic formula Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = a^2 \), \( b = -1 \), and \( c = 1 - a^2 \): \[ y = \frac{1 \pm \sqrt{(-1)^2 - 4(a^2)(1 - a^2)}}{2a^2} \] \[ y = \frac{1 \pm \sqrt{1 - 4a^2 + 4a^4}}{2a^2} \] \[ y = \frac{1 \pm \sqrt{(2a^2 - 1)^2}}{2a^2} \] ### Step 8: Simplify the expression Since \( \sqrt{(2a^2 - 1)^2} = |2a^2 - 1| \): Given \( \frac{1}{\sqrt{2}} < a < 1 \), we have \( 2a^2 - 1 > 0 \), thus: \[ y = \frac{1 + (2a^2 - 1)}{2a^2} \quad \text{or} \quad y = \frac{1 - (2a^2 - 1)}{2a^2} \] This simplifies to: \[ y = \frac{2a^2}{2a^2} = 1 \quad \text{or} \quad y = \frac{2 - 2a^2}{2a^2} = \frac{1 - a^2}{a^2} \] ### Step 9: Determine the valid solution for \( \beta^2 \) Since \( \beta^2 \neq 1 \), we take: \[ \beta^2 = \frac{1 - a^2}{a^2} \] ### Final Answer Thus, the value of \( \beta^2 \) is: \[ \beta^2 = \frac{1 - a^2}{a^2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-1: Concept Builder (Topic -4)|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-1: Concept Builder (Topic -5)|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-1: Concept Builder (Topic -2)|10 Videos
  • CHAPTERWISE NUMERIC INTEGER ANSWER QUESTIONS

    DISHA PUBLICATION|Exercise CHAPTER 27|15 Videos
  • CONIC SECTIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta are real and alpha^(2),-beta^(2) are the roots of the equation a^(2)x^(2)+x+(1-a^(2))=0(a>1), then beta^(2)

If alpha and beta are real and alpha^(2) and -beta^(2) are roots of a^(2)x^(2)+x+1-a^(2)=0a>1 then beta^(2) is

If alpha,beta are real and alpha^(2),-beta^(2) are the roots of the equation a^(2)x^(2)+x+(1-a^(2))=0(a>1) then beta^(2)= 1) a^(2)2113)1-a^(2)4)1+a^(2)

If alpha,beta are the roots of the equation x^(2)-p(x+1)-c=0, then (alpha+1)(beta+1)=

If alpha,beta are the roots of the equation x^(2)-mx+n=0 the value of (1+a+a^(2))(1+beta+beta^(2)) is

If alpha and beta are the roots of the equation 3x^(2)+8x+2=0 then ((1)/(alpha)+(1)/(beta))=?

If alpha and beta are the real roots of the equation x^(2)-(k+1)x-(k+2)=0, then minimum value of alpha^(2)+beta^(2) is

If alpha,beta " are the roots of the equation "x^(2) - 2x - 1 =0, "then what is the value of " alpha^(2)beta^(-2)+alpha^(-2)beta^(2)

DISHA PUBLICATION-COMPLEX NUMBERS AND QUADRATIC EQUATIONS -Exercise-1: Concept Builder (Topic -3)
  1. The product of the roots of the equation x|x|-5x-6=0 is equal to

    Text Solution

    |

  2. If alpha ne beta but alpha^(2)= 5 alpha - 3 and beta ^(2)= 5 beta...

    Text Solution

    |

  3. Product of real roots of the equation t^2x^2+|x|+9=0 a. is always +ve...

    Text Solution

    |

  4. The number of real solutions of the equation t^(2)x^(2)+|x|+9=0

    Text Solution

    |

  5. If alpha, beta are real and alpha^(2), beta^(2) are the roots of the e...

    Text Solution

    |

  6. if y = 2 + ( 1/ (4 +(1/(4+(1/(4 + ---oo))) then y = ?

    Text Solution

    |

  7. The root of the equation 3^(2x)-10.3^(x)+9=0 are

    Text Solution

    |

  8. If the equation (m-n)x^(2)+(n-1)x+1-m=0 has equal roots, then l, m and...

    Text Solution

    |

  9. If alpha and beta (alpha lt beta) are the roots of the equation x^(2) ...

    Text Solution

    |

  10. The real roots of the equation x^(2//3)+x^(1//3)-2=0 are

    Text Solution

    |

  11. The values of a for which the equation 2x^(2) -2(2a+1) x+a(a+1) = 0 ma...

    Text Solution

    |

  12. If the roots of the equation x^2+2a x+b=0 are real and distinct and th...

    Text Solution

    |

  13. If one root of the equation ax^2+bx+c=0 is the square of the other , t...

    Text Solution

    |

  14. The ration of roots of the equations ax^(2) + bx + c =0 and px^(2) + q...

    Text Solution

    |

  15. If x^(2)+y^(2)=25, xy=12 then x=

    Text Solution

    |

  16. If a ,b ,c(a b c^2)x^2+3a^2c x+b^2c x-6a^2-a b+2b^2=0 ares rational.

    Text Solution

    |

  17. Find the roots of the following equations. x^(2)-7x+12=0

    Text Solution

    |

  18. If 0 lt a lt b lt c and the roots alpha, beta of the equation ax ^(2)...

    Text Solution

    |

  19. Let p, q, r, s in R, x^2 + px + q = 0, x^2 + rx + s = 0 such that 2 (q...

    Text Solution

    |