Home
Class 12
MATHS
If |{:(a,b,0),(0,a,b),(b,0,a):}| = 0, (a...

If `|{:(a,b,0),(0,a,b),(b,0,a):}|` = 0, `(a ne 0 )` then

A

a is one of cube root of unity

B

b is one of cube root of unity

C

(a/b) is one of cube root of unity

D

(a/b) is one of cube root of -1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation given by: \[ \begin{vmatrix} a & b & 0 \\ 0 & a & b \\ b & 0 & a \end{vmatrix} = 0 \] we can follow these steps: ### Step 1: Calculate the Determinant We will calculate the determinant using the formula for a 3x3 matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + 0(dh - eg) \] For our matrix: \[ \begin{vmatrix} a & b & 0 \\ 0 & a & b \\ b & 0 & a \end{vmatrix} \] We can expand it as follows: \[ = a \begin{vmatrix} a & b \\ 0 & a \end{vmatrix} - b \begin{vmatrix} 0 & b \\ b & a \end{vmatrix} + 0 \] ### Step 2: Calculate the 2x2 Determinants Now we calculate the two 2x2 determinants: 1. For the first determinant: \[ \begin{vmatrix} a & b \\ 0 & a \end{vmatrix} = a \cdot a - b \cdot 0 = a^2 \] 2. For the second determinant: \[ \begin{vmatrix} 0 & b \\ b & a \end{vmatrix} = 0 \cdot a - b \cdot b = -b^2 \] ### Step 3: Substitute Back into the Determinant Substituting these back into our determinant calculation: \[ = a(a^2) - b(-b^2) = a^3 + b^3 \] ### Step 4: Set the Determinant to Zero We are given that this determinant equals zero: \[ a^3 + b^3 = 0 \] ### Step 5: Factor the Equation We can factor this equation using the identity \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \): \[ (a + b)(a^2 - ab + b^2) = 0 \] ### Step 6: Analyze the Factors Since \( a \neq 0 \) (given), we can conclude that: 1. \( a + b = 0 \) or 2. \( a^2 - ab + b^2 = 0 \) From \( a + b = 0 \), we have: \[ b = -a \] ### Step 7: Find the Ratio \( \frac{a}{b} \) Substituting \( b = -a \): \[ \frac{a}{b} = \frac{a}{-a} = -1 \] ### Conclusion Thus, we conclude that: \[ \frac{a}{b} = -1 \] This means \( \frac{a}{b} \) is a cube root of \(-1\). Therefore, the correct option is: **Option D: \( \frac{a}{b} \) is a cube root of -1.**
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

If |{:(a,b,0),(0,a,b),(b,0,a):}|=0 , then which one of the following is correct ?

If |(a,b,0),(0,a,b),(b,0,a)| = 0 , then which one of the following is correct ?

If Delta=|(-a,2b,0),(0,-a,2b),(2b,0,-a)|=0 then

The value of the determinant |{:(a, b,0), (0,a, b),(b,0,a):}| is equal to- a. a^3-b^3 b. a^3+b^3 c. 0 d. none of these

If S=[(0,1,1),(1,0,1),(1,1,0)] and A=[(b+c,c-a,b-a),(c-b,c+b,a-b),(b-c,a-c,a+b)] (a, b, c ne 0) , then SAS^(-1) is

If adj A = [{:(a,0),(-1,b):}] and ab ne 0, then what is the value of |A^(-1)| ?

DISHA PUBLICATION-DETERMINANTS-EXERCISE -1 CONCEPT BUILDER
  1. If 1,omega , omega^2 are the cube roots of unity , then Delta=|(1,ome...

    Text Solution

    |

  2. if A=[{:(alpha,2),(2, alpha):}] and |A^(3)|=125 then the value of alph...

    Text Solution

    |

  3. If |{:(a,b,0),(0,a,b),(b,0,a):}| = 0, (a ne 0 ) then

    Text Solution

    |

  4. If A [{:(1,2),(3,5):}] , then the value of the determinant | A^(2009) ...

    Text Solution

    |

  5. Prove that the determinant Delta =|{:(x,,sin0,,cos 0),(-sin 0,,-x,...

    Text Solution

    |

  6. If Delta = |{:(1,2,3),(2,3,5),(3,6,12):}|and Delta' = |{:(4,8,15),(3,6...

    Text Solution

    |

  7. If C(ij) is the cofactor of the element a(ij) of the determinant |{:(2...

    Text Solution

    |

  8. The parameter on which the value of the determinant |1a a^2"cos"(p-d)x...

    Text Solution

    |

  9. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  10. If |{:(x^(2) +x , 3x - 1 , -x + 3),(2x +1 , 2 + x^(2) , x^(3) - 3),(x ...

    Text Solution

    |

  11. Matrix M(r) is defined as M(r) = ({:(r,r-1),(r-1,r):}), r in N. The v...

    Text Solution

    |

  12. If a, b, c are complex numbers, then the determinant Delta = |(0,-b,...

    Text Solution

    |

  13. If in a triangle ABC, |{:(1, sin A ,sin^(2)A),(1,sin B , sin^(2)B),(1,...

    Text Solution

    |

  14. The value of |(.^(10)C(4).^(10)C(5).^(11)C(m)),(.^(11)C(6).^(11)C(7).^...

    Text Solution

    |

  15. If f(x) = |{:(cos^(2)x, cosx.sinx, -sin x),(cos x sinx ,sin^(2)x ,cos ...

    Text Solution

    |

  16. If plambda^(4) + q lambda^(3) + r lambda^(2) + s lambda + t = |{:(b^(...

    Text Solution

    |

  17. If a,b,c are in A.P then the value of |[x+1, x+2, x+a] , [x+2, x+3, x+...

    Text Solution

    |

  18. |[sin^2(13^@),sin^2(77^@),tan135^@],[sin^2(77^@),tan135^@,sin^2(13^@)]...

    Text Solution

    |

  19. The roots of the equations |{:(1+x,3,5),(2,2+x,5),(2,3,x+4):}| = 0 are

    Text Solution

    |

  20. The value of the determinant |((a^x+a^-x)^2, (a^x-a^-x)^2, 1),(b^x+b^-...

    Text Solution

    |