Home
Class 12
MATHS
Matrix M(r) is defined as M(r) = ({:(r,r...

Matrix `M_(r)` is defined as `M_(r) = ({:(r,r-1),(r-1,r):}), r in ` N. The value of det `(M_(1)) + det (M_(2)) + det (M_(3))+ .... ) det (M_(2014))` is

A

2013

B

2014

C

`(2013)^(2)`

D

`(2014)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the value of the sum of determinants of the matrices \( M_r \) defined as: \[ M_r = \begin{pmatrix} r & r-1 \\ r-1 & r \end{pmatrix} \] We need to find: \[ \text{det}(M_1) + \text{det}(M_2) + \text{det}(M_3) + \ldots + \text{det}(M_{2014}) \] ### Step 1: Calculate the determinant of \( M_r \) The determinant of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by \( ad - bc \). For our matrix \( M_r \): \[ \text{det}(M_r) = r \cdot r - (r-1)(r-1) = r^2 - (r^2 - 2r + 1) = 2r - 1 \] ### Step 2: Set up the summation Now we can express the desired sum as: \[ \sum_{r=1}^{2014} \text{det}(M_r) = \sum_{r=1}^{2014} (2r - 1) \] ### Step 3: Simplify the summation We can separate the summation: \[ \sum_{r=1}^{2014} (2r - 1) = \sum_{r=1}^{2014} 2r - \sum_{r=1}^{2014} 1 \] ### Step 4: Calculate each part of the summation 1. **Calculate \( \sum_{r=1}^{2014} 2r \)**: \[ \sum_{r=1}^{2014} 2r = 2 \sum_{r=1}^{2014} r = 2 \cdot \frac{2014 \cdot 2015}{2} = 2014 \cdot 2015 \] 2. **Calculate \( \sum_{r=1}^{2014} 1 \)**: \[ \sum_{r=1}^{2014} 1 = 2014 \] ### Step 5: Combine the results Now substituting back into our equation: \[ \sum_{r=1}^{2014} (2r - 1) = 2014 \cdot 2015 - 2014 = 2014 (2015 - 1) = 2014 \cdot 2014 \] ### Final Answer Thus, the value of \( \text{det}(M_1) + \text{det}(M_2) + \text{det}(M_3) + \ldots + \text{det}(M_{2014}) \) is: \[ \boxed{2014^2} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

Matrix M_(r) is defined as , M_(r)=[(r,r-1),(r-1,r)],r in N ; value of det(M_(1))+det(M_(2))+det(M_(3))+..............+det(M_(2007)) is (A) 2007 (B) 2008 (C) (2008)^(2) (D) (2007)^(2)

The value of sum_(r=0)^(3m)(-1)^(r).6mC_(2r) is

If A=[{:(2,3),(-1,-2):}] and B=sum_(r=1)^(10)A^r , then the value of det (B)is equal to

If A=[(5, -6),(1,-1)] then the value of ("det"(A^(m)-5A^(m-1)))/("det"(A^(n)-5A^(n-1)))(m, "n" in N) is

The value of sum_(r=1)^(3m)(-3)^(r-1).6mC_(2r-1) is

Two planets of radii R_(1) and R_(2 have masses m_(1) and M_(2) such that (M_(1))/(M_(2))=(1)/(g) . The weight of an object on these planets is w_(1) and w_(2) such that (w_(1))/(w_(2))=(4)/(9) . The ratio R_(1)/R_(2)

The figure represents two concentric shells of radii R_(1) and R_(2) and masses M_(1) and M_(2) respectively. The gravitational field intensity at the point A at distance a (R_(1) lt a lt R_(2)) is

DISHA PUBLICATION-DETERMINANTS-EXERCISE -1 CONCEPT BUILDER
  1. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  2. If |{:(x^(2) +x , 3x - 1 , -x + 3),(2x +1 , 2 + x^(2) , x^(3) - 3),(x ...

    Text Solution

    |

  3. Matrix M(r) is defined as M(r) = ({:(r,r-1),(r-1,r):}), r in N. The v...

    Text Solution

    |

  4. If a, b, c are complex numbers, then the determinant Delta = |(0,-b,...

    Text Solution

    |

  5. If in a triangle ABC, |{:(1, sin A ,sin^(2)A),(1,sin B , sin^(2)B),(1,...

    Text Solution

    |

  6. The value of |(.^(10)C(4).^(10)C(5).^(11)C(m)),(.^(11)C(6).^(11)C(7).^...

    Text Solution

    |

  7. If f(x) = |{:(cos^(2)x, cosx.sinx, -sin x),(cos x sinx ,sin^(2)x ,cos ...

    Text Solution

    |

  8. If plambda^(4) + q lambda^(3) + r lambda^(2) + s lambda + t = |{:(b^(...

    Text Solution

    |

  9. If a,b,c are in A.P then the value of |[x+1, x+2, x+a] , [x+2, x+3, x+...

    Text Solution

    |

  10. |[sin^2(13^@),sin^2(77^@),tan135^@],[sin^2(77^@),tan135^@,sin^2(13^@)]...

    Text Solution

    |

  11. The roots of the equations |{:(1+x,3,5),(2,2+x,5),(2,3,x+4):}| = 0 are

    Text Solution

    |

  12. The value of the determinant |((a^x+a^-x)^2, (a^x-a^-x)^2, 1),(b^x+b^-...

    Text Solution

    |

  13. If a, b, c, are in A.P, find value of |a y+4 5y+7 8y+a3y+5 6y+8 9y+b4...

    Text Solution

    |

  14. suppose D= |{:(a(1),,b(1),,c(1)),(a(2),,b(2),,c(2)),(a(3),,b(3),,c(3...

    Text Solution

    |

  15. If D =|{:(1,1,1),(1,1+x,1),(1,1,1+y):}|"for" " "xne0,yne0 then D is

    Text Solution

    |

  16. If |(a,b,aalpha+b),(b,c,balpha+c),(a alpha+b,b alpha+c,0)|=0 then

    Text Solution

    |

  17. If z = |{:(-5,3+4i,5-7i),(3-4i,6,8+7i),(5+7i,8-7i,9):}|, then z is

    Text Solution

    |

  18. For how many values of 'x' in the closed interval [-4,-1] is the matri...

    Text Solution

    |

  19. The value of the determinant |{:(1+x,2,3,4),(1,2+x,3,4),(1,2,3+x,4),(1...

    Text Solution

    |

  20. Determinant |{:(a+b+nc,(n-1)a,(n-1)b),((n-1)c,b+c+na,(n-1)b),((n-1)c,(...

    Text Solution

    |