Home
Class 12
MATHS
If in a triangle ABC, |{:(1, sin A ,sin^...

If in a triangle ABC, `|{:(1, sin A ,sin^(2)A),(1,sin B , sin^(2)B),(1, sin C, sin^(2)C):}|= 0` then the triangle is

A

equilateral or isosceles

B

equilateral or right-angled

C

right angled or isosceles

D

None ot these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given in the question and analyze the conditions under which it equals zero. The determinant is given as: \[ D = \begin{vmatrix} 1 & \sin A & \sin^2 A \\ 1 & \sin B & \sin^2 B \\ 1 & \sin C & \sin^2 C \end{vmatrix} \] ### Step 1: Evaluate the Determinant We start by applying properties of determinants. We can subtract the first row from the second and third rows: \[ D = \begin{vmatrix} 1 & \sin A & \sin^2 A \\ 0 & \sin B - \sin A & \sin^2 B - \sin^2 A \\ 0 & \sin C - \sin A & \sin^2 C - \sin^2 A \end{vmatrix} \] ### Step 2: Factor the Rows Next, we can factor the differences of squares in the second and third rows: \[ \sin^2 B - \sin^2 A = (\sin B - \sin A)(\sin B + \sin A) \] \[ \sin^2 C - \sin^2 A = (\sin C - \sin A)(\sin C + \sin A) \] Thus, we rewrite the determinant as: \[ D = \begin{vmatrix} 1 & \sin A & \sin^2 A \\ 0 & \sin B - \sin A & (\sin B - \sin A)(\sin B + \sin A) \\ 0 & \sin C - \sin A & (\sin C - \sin A)(\sin C + \sin A) \end{vmatrix} \] ### Step 3: Simplify the Determinant Now, we can factor out \((\sin B - \sin A)\) from the second row and \((\sin C - \sin A)\) from the third row: \[ D = (\sin B - \sin A)(\sin C - \sin A) \begin{vmatrix} 1 & \sin A & \sin^2 A \\ 0 & 1 & \sin B + \sin A \\ 0 & 1 & \sin C + \sin A \end{vmatrix} \] ### Step 4: Evaluate the Remaining Determinant The remaining determinant simplifies to: \[ D = (\sin B - \sin A)(\sin C - \sin A) \begin{vmatrix} 1 & \sin A \\ 1 & \sin B + \sin A \\ 1 & \sin C + \sin A \end{vmatrix} \] This determinant equals zero if either \((\sin B - \sin A) = 0\) or \((\sin C - \sin A) = 0\). ### Step 5: Analyze the Conditions 1. If \(\sin B = \sin A\), then \(B = A\) or \(B + A = \pi\). Since \(A + B + C = \pi\), the second condition is not possible in a triangle. 2. If \(\sin C = \sin A\), then \(C = A\) or \(C + A = \pi\). Again, the second condition is not possible in a triangle. 3. Similarly, if \(\sin C = \sin B\), then \(C = B\) or \(C + B = \pi\). ### Conclusion From these conditions, we conclude that: - If any two angles are equal (e.g., \(A = B\), \(B = C\), or \(C = A\)), the triangle is isosceles. - If all three angles are equal, the triangle is equilateral. Thus, the triangle can either be isosceles or equilateral. ### Final Answer The triangle is either **isosceles or equilateral**. ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1 + sin B,1 + sin C),(sin A + sin^(2) A,sin B + sin^(2)B,sin C + sin^(2) C)|= 0 , then the triangle ABC is

In Delta ABC, if sin^(2)A+sin^(2)B=sin^(2)C then the triangle is

In triangle ABC, if sin^(2)A+sin^(2)B=sin^(2)C then the triangle is

"In triangle ABC " "c(sin^(2)A+sin^(2)B)=sin C(a sin A+b sin B)

In a triangle ABC, if sin A sin B= (ab)/(c^(2)) , then the triangle is :

In a /_ABC, if |[1,1,1,1][1+sin A,1+sin B,1+sin Csin A+sin^(2)A,sin B+sin^(2)B,sin C+sin^(2)C]|= ,then prove that /_ABC is an isosceles triangle.

If in a Delta ABC, cos B = (sin A)/(2 sin C), then the triangle is

DISHA PUBLICATION-DETERMINANTS-EXERCISE -1 CONCEPT BUILDER
  1. Matrix M(r) is defined as M(r) = ({:(r,r-1),(r-1,r):}), r in N. The v...

    Text Solution

    |

  2. If a, b, c are complex numbers, then the determinant Delta = |(0,-b,...

    Text Solution

    |

  3. If in a triangle ABC, |{:(1, sin A ,sin^(2)A),(1,sin B , sin^(2)B),(1,...

    Text Solution

    |

  4. The value of |(.^(10)C(4).^(10)C(5).^(11)C(m)),(.^(11)C(6).^(11)C(7).^...

    Text Solution

    |

  5. If f(x) = |{:(cos^(2)x, cosx.sinx, -sin x),(cos x sinx ,sin^(2)x ,cos ...

    Text Solution

    |

  6. If plambda^(4) + q lambda^(3) + r lambda^(2) + s lambda + t = |{:(b^(...

    Text Solution

    |

  7. If a,b,c are in A.P then the value of |[x+1, x+2, x+a] , [x+2, x+3, x+...

    Text Solution

    |

  8. |[sin^2(13^@),sin^2(77^@),tan135^@],[sin^2(77^@),tan135^@,sin^2(13^@)]...

    Text Solution

    |

  9. The roots of the equations |{:(1+x,3,5),(2,2+x,5),(2,3,x+4):}| = 0 are

    Text Solution

    |

  10. The value of the determinant |((a^x+a^-x)^2, (a^x-a^-x)^2, 1),(b^x+b^-...

    Text Solution

    |

  11. If a, b, c, are in A.P, find value of |a y+4 5y+7 8y+a3y+5 6y+8 9y+b4...

    Text Solution

    |

  12. suppose D= |{:(a(1),,b(1),,c(1)),(a(2),,b(2),,c(2)),(a(3),,b(3),,c(3...

    Text Solution

    |

  13. If D =|{:(1,1,1),(1,1+x,1),(1,1,1+y):}|"for" " "xne0,yne0 then D is

    Text Solution

    |

  14. If |(a,b,aalpha+b),(b,c,balpha+c),(a alpha+b,b alpha+c,0)|=0 then

    Text Solution

    |

  15. If z = |{:(-5,3+4i,5-7i),(3-4i,6,8+7i),(5+7i,8-7i,9):}|, then z is

    Text Solution

    |

  16. For how many values of 'x' in the closed interval [-4,-1] is the matri...

    Text Solution

    |

  17. The value of the determinant |{:(1+x,2,3,4),(1,2+x,3,4),(1,2,3+x,4),(1...

    Text Solution

    |

  18. Determinant |{:(a+b+nc,(n-1)a,(n-1)b),((n-1)c,b+c+na,(n-1)b),((n-1)c,(...

    Text Solution

    |

  19. If |{:(a,5x,p),(b,10y,5),(c,15z,15):}| = 125, then find the value of |...

    Text Solution

    |

  20. If omega is the complex cube root of unity then |[1,1+i+omega^2,omeg...

    Text Solution

    |