Home
Class 12
MATHS
If plambda^(4) + q lambda^(3) + r lambda...

If p`lambda^(4) + q lambda^(3) + r lambda^(2) + s lambda + t = |{:(b^(2)+c^(2), a^(2) + lambda , a^(2) + lambda),(b^(2)+lambda,c^(2)+a^(2),b^(2)+lambda),(c^(2)+lambda,c^(2)+lambda,a^(2)+b^(2)):}|` is
an identity in `lambda` wherep, q, r,s , t are constants, then the value of t is

A

1

B

2

C

0

D

None ot these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( t \) in the given determinant identity, we will follow the steps outlined in the video transcript. ### Step-by-Step Solution: 1. **Write the Determinant**: The determinant is given as: \[ D = \begin{vmatrix} b^2 + c^2 & a^2 + \lambda & a^2 + \lambda \\ b^2 + \lambda & c^2 + a^2 & b^2 + \lambda \\ c^2 + \lambda & c^2 + \lambda & a^2 + b^2 \end{vmatrix} \] 2. **Row Operations**: We can perform row operations to simplify the determinant. Specifically, we can replace \( R_2 \) with \( R_2 - R_1 \) and \( R_3 \) with \( R_3 - R_1 \): \[ D = \begin{vmatrix} b^2 + c^2 & a^2 + \lambda & a^2 + \lambda \\ \lambda - c^2 & 0 & \lambda - b^2 \\ \lambda - c^2 & \lambda - c^2 & a^2 + b^2 \end{vmatrix} \] 3. **Further Simplification**: Now, we can simplify the determinant further. Notice that the second and third rows have similar terms: \[ D = (b^2 + c^2) \begin{vmatrix} 0 & \lambda - b^2 \\ \lambda - c^2 & a^2 + b^2 \end{vmatrix} \] 4. **Calculate the 2x2 Determinant**: The determinant of the 2x2 matrix can be calculated as follows: \[ D = (b^2 + c^2) \left(0 \cdot (a^2 + b^2) - (\lambda - b^2)(\lambda - c^2)\right) \] Simplifying this gives: \[ D = -(b^2 + c^2)(\lambda - b^2)(\lambda - c^2) \] 5. **Expand the Expression**: Now, we expand the expression: \[ D = -(b^2 + c^2)(\lambda^2 - (b^2 + c^2)\lambda + b^2c^2) \] 6. **Identify the Coefficients**: From the expansion, we can identify the coefficients of the polynomial in \( \lambda \): \[ D = -(b^2 + c^2)\lambda^2 + (b^2 + c^2)^2\lambda - (b^2 + c^2)b^2c^2 \] 7. **Set Up the Identity**: Since the given determinant is an identity in \( \lambda \), we can equate the coefficients of \( \lambda^0 \) (the constant term) to find \( t \): \[ t = -(b^2 + c^2)b^2c^2 \] 8. **Final Value of \( t \)**: Therefore, the value of \( t \) is: \[ t = 4a^2b^2c^2 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

"Let "plambda^(4) + qlambda^(3) +rlambda^(2) + slambda +t =|{:(lambda^(2)+3lambda,lambda-1, lambda+3),(lambda+1, -2lambda, lambda-4),(lambda-3, lambda+4, 3lambda):}| be an identity in lambda , where p,q,r,s and t are constants. Then, the value of t is..... .

Let p lambda^(4)+q lambda^(3)+r lambda^(2)+s lambda+t=|[lambda^(2)+3 lambda,lambda-1,lambda-3],[lambda-1,-2 lambda,lambda-4],[lambda-3,lambda+3,3 lambda]| be an identity in lambda ,where p,q,r,s and t are constants.Then the value of t is

the values of lambda for which (lambda^(2)-3 lambda+2)x^(2)+(lambda^(2)-5 lambda+6)+lambda^(2)-4=0 is identity in x is

If a lambda^(4)+b lambda^(3)+c lambda^(2)+d lambda+e = |[lambda^(2)-3,-1,lambda+sqrt(3)],[lambda^(2)+lambda,2 lambda-4,3 lambda+1],[lambda^(2)-3 lambda,3 lambda+5,lambda-3]| then |a| equals

det [[lambda ^ (4) +2 lambda ^, 2 lambda ^ (3) -3,3 lambda ^ (2) + lambda2,3,15,0,2]] = a lambda ^ (4) + b lambda ^ (3) + c lambda ^ (2) + d lambda + e

p(lambda)^4+q(lambda)^3+r(lambda)^2+s(lambda)+t = |((lambda^2 + 3lambda) , lambda -1 , lambda+3) , (lambda +1 , -2lambda , lambda-4 ) ,(lambda-3 , lambda+4 , 3lambda)| find t=?

If a lambda^(4)+b lambda^(3)+c lambda^(2)+d lambda+e=|[lambda^(2)-3,lambda-1,lambda+sqrt(3)],[lambda^(2)+lambda,2 lambda-4,3 lambda+1],[lambda^(2)-3 lambda,3 lambda+5,lambda-3]| then |a| equals

|[a^(2)+lambda^(2),ab+c lambda,ca-b lambdaab-c lambda,b^(2)+lambda^(2),bc+aca+b lambda,bc-a lambda,c^(2)+lambda^(2) then he value of lambda is 8 b.27, c.1 d.-1=(1+a^(2)+b^(2)+c^(2))^(3)

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C , where A, B and C are matrices then find matrices B and C.

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C, where A, B and C are matrices then A+B=

DISHA PUBLICATION-DETERMINANTS-EXERCISE -1 CONCEPT BUILDER
  1. The value of |(.^(10)C(4).^(10)C(5).^(11)C(m)),(.^(11)C(6).^(11)C(7).^...

    Text Solution

    |

  2. If f(x) = |{:(cos^(2)x, cosx.sinx, -sin x),(cos x sinx ,sin^(2)x ,cos ...

    Text Solution

    |

  3. If plambda^(4) + q lambda^(3) + r lambda^(2) + s lambda + t = |{:(b^(...

    Text Solution

    |

  4. If a,b,c are in A.P then the value of |[x+1, x+2, x+a] , [x+2, x+3, x+...

    Text Solution

    |

  5. |[sin^2(13^@),sin^2(77^@),tan135^@],[sin^2(77^@),tan135^@,sin^2(13^@)]...

    Text Solution

    |

  6. The roots of the equations |{:(1+x,3,5),(2,2+x,5),(2,3,x+4):}| = 0 are

    Text Solution

    |

  7. The value of the determinant |((a^x+a^-x)^2, (a^x-a^-x)^2, 1),(b^x+b^-...

    Text Solution

    |

  8. If a, b, c, are in A.P, find value of |a y+4 5y+7 8y+a3y+5 6y+8 9y+b4...

    Text Solution

    |

  9. suppose D= |{:(a(1),,b(1),,c(1)),(a(2),,b(2),,c(2)),(a(3),,b(3),,c(3...

    Text Solution

    |

  10. If D =|{:(1,1,1),(1,1+x,1),(1,1,1+y):}|"for" " "xne0,yne0 then D is

    Text Solution

    |

  11. If |(a,b,aalpha+b),(b,c,balpha+c),(a alpha+b,b alpha+c,0)|=0 then

    Text Solution

    |

  12. If z = |{:(-5,3+4i,5-7i),(3-4i,6,8+7i),(5+7i,8-7i,9):}|, then z is

    Text Solution

    |

  13. For how many values of 'x' in the closed interval [-4,-1] is the matri...

    Text Solution

    |

  14. The value of the determinant |{:(1+x,2,3,4),(1,2+x,3,4),(1,2,3+x,4),(1...

    Text Solution

    |

  15. Determinant |{:(a+b+nc,(n-1)a,(n-1)b),((n-1)c,b+c+na,(n-1)b),((n-1)c,(...

    Text Solution

    |

  16. If |{:(a,5x,p),(b,10y,5),(c,15z,15):}| = 125, then find the value of |...

    Text Solution

    |

  17. If omega is the complex cube root of unity then |[1,1+i+omega^2,omeg...

    Text Solution

    |

  18. For positive numbers x,y,s the numberical value of the determinant |{:...

    Text Solution

    |

  19. If the value of (a + b + c)= 0 then determinant |{:(a-b-c,2a,2a),(2b,b...

    Text Solution

    |

  20. If a1, a2, a3,....... are in G.P. then the value of determinant |(log(...

    Text Solution

    |