Home
Class 12
MATHS
The roots of the equations |{:(1+x,3,5),...

The roots of the equations `|{:(1+x,3,5),(2,2+x,5),(2,3,x+4):}|` = 0 are

A

2,1,-9

B

1,1,-9

C

`-1, 1,-9`

D

`-2,-1,-8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation given by \[ \begin{vmatrix} 1 + x & 3 & 5 \\ 2 & 2 + x & 5 \\ 2 & 3 & x + 4 \end{vmatrix} = 0, \] we will follow these steps: ### Step 1: Write the determinant We start with the determinant: \[ D = \begin{vmatrix} 1 + x & 3 & 5 \\ 2 & 2 + x & 5 \\ 2 & 3 & x + 4 \end{vmatrix} \] ### Step 2: Apply row operations We will simplify the determinant using row operations. Specifically, we can perform the following operations: - \( R_2 \rightarrow R_2 - R_1 \) - \( R_3 \rightarrow R_3 - R_1 \) This gives us: \[ D = \begin{vmatrix} 1 + x & 3 & 5 \\ 2 - (1 + x) & (2 + x) - 3 & 5 - 5 \\ 2 - (1 + x) & 3 - 3 & (x + 4) - 5 \end{vmatrix} \] Calculating the new rows: - For \( R_2 \): - First element: \( 2 - (1 + x) = 1 - x \) - Second element: \( (2 + x) - 3 = x - 1 \) - Third element: \( 0 \) - For \( R_3 \): - First element: \( 2 - (1 + x) = 1 - x \) - Second element: \( 0 \) - Third element: \( (x + 4) - 5 = x - 1 \) Thus, we have: \[ D = \begin{vmatrix} 1 + x & 3 & 5 \\ 1 - x & x - 1 & 0 \\ 1 - x & 0 & x - 1 \end{vmatrix} \] ### Step 3: Factor out common terms Notice that \( R_2 \) and \( R_3 \) both have a common factor of \( 1 - x \). We can factor this out: \[ D = (1 - x) \begin{vmatrix} 1 + x & 3 & 5 \\ 1 & x - 1 & 0 \\ 1 & 0 & x - 1 \end{vmatrix} \] ### Step 4: Expand the determinant Now we will expand the determinant: \[ D = (1 - x) \begin{vmatrix} 1 + x & 3 & 5 \\ 1 & x - 1 & 0 \\ 1 & 0 & x - 1 \end{vmatrix} \] Using the property of determinants, we can expand along the first column: \[ D = (1 - x) \left( (1 + x) \begin{vmatrix} x - 1 & 0 \\ 0 & x - 1 \end{vmatrix} - 3 \begin{vmatrix} 1 & 0 \\ 1 & x - 1 \end{vmatrix} + 5 \begin{vmatrix} 1 & x - 1 \\ 1 & 0 \end{vmatrix} \right) \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} x - 1 & 0 \\ 0 & x - 1 \end{vmatrix} = (x - 1)(x - 1) = (x - 1)^2 \) 2. \( \begin{vmatrix} 1 & 0 \\ 1 & x - 1 \end{vmatrix} = 1(x - 1) - 0 = x - 1 \) 3. \( \begin{vmatrix} 1 & x - 1 \\ 1 & 0 \end{vmatrix} = 1(0) - 1(x - 1) = - (x - 1) \) Substituting these back into the determinant: \[ D = (1 - x) \left( (1 + x)(x - 1)^2 - 3(x - 1) - 5(x - 1) \right) \] ### Step 5: Simplify the expression Combining the terms: \[ D = (1 - x) \left( (1 + x)(x - 1)^2 - 8(x - 1) \right) \] ### Step 6: Set the determinant to zero Setting \( D = 0 \): \[ (1 - x) \left( (1 + x)(x - 1)^2 - 8(x - 1) \right) = 0 \] This gives us two cases: 1. \( 1 - x = 0 \) → \( x = 1 \) 2. \( (1 + x)(x - 1)^2 - 8(x - 1) = 0 \) ### Step 7: Solve the second equation Factoring out \( (x - 1) \): \[ (x - 1) \left( (1 + x)(x - 1) - 8 \right) = 0 \] This leads to: \[ (1 + x)(x - 1) - 8 = 0 \] Expanding gives: \[ x^2 - 1 + x - 8 = 0 \implies x^2 + x - 9 = 0 \] ### Step 8: Use the quadratic formula Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1 + 36}}{2} = \frac{-1 \pm 7}{2} \] This gives us: \[ x = 3 \quad \text{and} \quad x = -4 \] ### Final Roots Thus, the roots of the equation are: \[ x = 1, \quad x = 3, \quad x = -4 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

The roots of the equation |(1,4,20),(1,-2,5),(1,2x,5x^(2))| = 0 are

(i) Solve the equation |{:(x-2,2x-3,3x-4),(x-4,2x-9,3x-16),(x-8,2x-27,2x-64):}|=0 (ii) Prove that x = 1 is a root of the equation (ii) Prove that x=1 is a root of the following equation |{:(x+1,3,5),(2,x+2,5),(2,3,x+4):}|=0 Also find the remaining roots. (iii) If a+b+c=0 then solve |{:(a-x,c,b),(c,b-x,a),(v,a,c-x):}|=0 (iv) Solve |{:(6-x,3,3),(3,4-x,5),(3,5,4-5):}|=0

The roots of the equation x^(2/3)+x^(1/3)-2=0 are

The roots of the equation x^(2/3)+x^(1/3)-2=0 are

The sum of roots of the equations |{:(x+2,,2x+3,,3x+4),(2x+3,,3x+4,,4x+5),(3x+5,,5x+8,,10x+17):}| =0 " is " "____"

The roots of the equation (3 - x)^(4) + (2 - x)^(4) = (5 - 2x)^(4) are

A root of the equation 4x^(3)+2x^(2)-3x-1=0 is

The sum of two non integral roots of |{:(x,2,5),(3,x,3),(5,4,x):}|=0 is

DISHA PUBLICATION-DETERMINANTS-EXERCISE -1 CONCEPT BUILDER
  1. If a,b,c are in A.P then the value of |[x+1, x+2, x+a] , [x+2, x+3, x+...

    Text Solution

    |

  2. |[sin^2(13^@),sin^2(77^@),tan135^@],[sin^2(77^@),tan135^@,sin^2(13^@)]...

    Text Solution

    |

  3. The roots of the equations |{:(1+x,3,5),(2,2+x,5),(2,3,x+4):}| = 0 are

    Text Solution

    |

  4. The value of the determinant |((a^x+a^-x)^2, (a^x-a^-x)^2, 1),(b^x+b^-...

    Text Solution

    |

  5. If a, b, c, are in A.P, find value of |a y+4 5y+7 8y+a3y+5 6y+8 9y+b4...

    Text Solution

    |

  6. suppose D= |{:(a(1),,b(1),,c(1)),(a(2),,b(2),,c(2)),(a(3),,b(3),,c(3...

    Text Solution

    |

  7. If D =|{:(1,1,1),(1,1+x,1),(1,1,1+y):}|"for" " "xne0,yne0 then D is

    Text Solution

    |

  8. If |(a,b,aalpha+b),(b,c,balpha+c),(a alpha+b,b alpha+c,0)|=0 then

    Text Solution

    |

  9. If z = |{:(-5,3+4i,5-7i),(3-4i,6,8+7i),(5+7i,8-7i,9):}|, then z is

    Text Solution

    |

  10. For how many values of 'x' in the closed interval [-4,-1] is the matri...

    Text Solution

    |

  11. The value of the determinant |{:(1+x,2,3,4),(1,2+x,3,4),(1,2,3+x,4),(1...

    Text Solution

    |

  12. Determinant |{:(a+b+nc,(n-1)a,(n-1)b),((n-1)c,b+c+na,(n-1)b),((n-1)c,(...

    Text Solution

    |

  13. If |{:(a,5x,p),(b,10y,5),(c,15z,15):}| = 125, then find the value of |...

    Text Solution

    |

  14. If omega is the complex cube root of unity then |[1,1+i+omega^2,omeg...

    Text Solution

    |

  15. For positive numbers x,y,s the numberical value of the determinant |{:...

    Text Solution

    |

  16. If the value of (a + b + c)= 0 then determinant |{:(a-b-c,2a,2a),(2b,b...

    Text Solution

    |

  17. If a1, a2, a3,....... are in G.P. then the value of determinant |(log(...

    Text Solution

    |

  18. If adjB=A ,|P|=|Q|=1,t h e na d j(Q^(-1)B P^(-1)) is P Q b. Q A P c. P...

    Text Solution

    |

  19. If A = [{:(1,tan x),(-tanx,1):}] , then the value of |A' A^(-1)|

    Text Solution

    |

  20. The matrix [(lamda,-1,4),(-3,0,1),(-1,1,2)] is invertible if

    Text Solution

    |