Home
Class 12
MATHS
If z = |{:(-5,3+4i,5-7i),(3-4i,6,8+7i),(...

If z = `|{:(-5,3+4i,5-7i),(3-4i,6,8+7i),(5+7i,8-7i,9):}|`, then z is

A

purely real

B

purely imaginary

C

a + ib, where a `ne` 0, `b ne 0 `

D

a + ib, where b = 4

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( z \) given the determinant: \[ z = \begin{vmatrix} -5 & 3 + 4i & 5 - 7i \\ 3 - 4i & 6 & 8 + 7i \\ 5 + 7i & 8 - 7i & 9 \end{vmatrix} \] we will calculate the determinant step by step. ### Step 1: Write the Determinant We start by writing the determinant explicitly: \[ z = \begin{vmatrix} -5 & 3 + 4i & 5 - 7i \\ 3 - 4i & 6 & 8 + 7i \\ 5 + 7i & 8 - 7i & 9 \end{vmatrix} \] ### Step 2: Apply the Determinant Formula The determinant of a \( 3 \times 3 \) matrix is given by: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix, we have: - \( a = -5 \), \( b = 3 + 4i \), \( c = 5 - 7i \) - \( d = 3 - 4i \), \( e = 6 \), \( f = 8 + 7i \) - \( g = 5 + 7i \), \( h = 8 - 7i \), \( i = 9 \) ### Step 3: Calculate the Determinant Now we can substitute these values into the determinant formula: \[ z = -5 \left( 6 \cdot 9 - (8 + 7i)(8 - 7i) \right) - (3 + 4i) \left( (3 - 4i) \cdot 9 - (5 + 7i)(8 - 7i) \right) + (5 - 7i) \left( (3 - 4i)(8 - 7i) - 6(5 + 7i) \right) \] ### Step 4: Calculate Each Term 1. Calculate \( 6 \cdot 9 = 54 \). 2. Calculate \( (8 + 7i)(8 - 7i) = 64 + 49 = 113 \). 3. Thus, \( 6 \cdot 9 - (8 + 7i)(8 - 7i) = 54 - 113 = -59 \). Now substituting back into the determinant: \[ z = -5(-59) - (3 + 4i) \left( (3 - 4i) \cdot 9 - (5 + 7i)(8 - 7i) \right) + (5 - 7i) \left( (3 - 4i)(8 - 7i) - 6(5 + 7i) \right) \] ### Step 5: Simplify Further Continue simplifying the remaining terms. 1. Calculate \( (3 - 4i) \cdot 9 = 27 - 36i \). 2. Calculate \( (5 + 7i)(8 - 7i) = 40 - 35i + 56i - 49 = 40 + 21i - 49 = -9 + 21i \). 3. Thus, \( (3 - 4i) \cdot 9 - (5 + 7i)(8 - 7i) = (27 - 36i) - (-9 + 21i) = 36 - 57i \). Now substitute back into the determinant: \[ z = 295 - (3 + 4i)(36 - 57i) + (5 - 7i) \left( (3 - 4i)(8 - 7i) - 6(5 + 7i) \right) \] ### Step 6: Final Calculation Continue calculating the remaining terms, and after simplification, you will find that \( z \) is a purely real number. ### Conclusion The final value of \( z \) is a real number, confirming that the determinant of this Hermitian matrix is real.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

If z = |{:(1 , 1 + 2i, - 5i),(1 - 2i,-3,5+3i),(5i,5-3i,7):}| , then (i= sqrt(-1))

If z=|-5 3+4i5-7i3-4i6 8+7i5+7i8-7i9|,t h e nz is purely real purely imaginary a+i b ,w h e r ea!=0,b!=0 d. a+i b ,w h e r eb=4

If z=|{:(3+2i,5-i,7-3i),(i,2i,-3i),(3-2i,5+i,7+3i):}|,"where "i=sqrt(-1),"then"

If z=|(1+i, 5+2i, 3-2i),(7i, -3i, 5i),(1-i, 5-2i, 3+2i)| then (A) z is purely real imaginary (B) z is purely real (C) z has equal real and imaginary parts (D) z has positive real and imaginary parts.

if |(z-6)/(z+8)|=1 , then the value of x in R , where z=x+i|{:(-3,2i,2+i),(-2i,2,4-3i),(2-i,4+3i,7):}| , is

Let P(x)=|(x,-3+4i,3-4i),(x,-7i,5+6i),(-x,7-2i,-7-2i)| The number of values of x for which P(x)=0 is

(7+i5)(7-i5)

Prove that the value of the determinant |{:(-7,,5+3i,,(2)/(3)-4i),(5-3i ,,8,,4+5i),((2)/(3) +4i,,4-5i,,9):}|" is real "

If Z=(7+i)/(3+4i) , then find Z^14 .

DISHA PUBLICATION-DETERMINANTS-EXERCISE -1 CONCEPT BUILDER
  1. If D =|{:(1,1,1),(1,1+x,1),(1,1,1+y):}|"for" " "xne0,yne0 then D is

    Text Solution

    |

  2. If |(a,b,aalpha+b),(b,c,balpha+c),(a alpha+b,b alpha+c,0)|=0 then

    Text Solution

    |

  3. If z = |{:(-5,3+4i,5-7i),(3-4i,6,8+7i),(5+7i,8-7i,9):}|, then z is

    Text Solution

    |

  4. For how many values of 'x' in the closed interval [-4,-1] is the matri...

    Text Solution

    |

  5. The value of the determinant |{:(1+x,2,3,4),(1,2+x,3,4),(1,2,3+x,4),(1...

    Text Solution

    |

  6. Determinant |{:(a+b+nc,(n-1)a,(n-1)b),((n-1)c,b+c+na,(n-1)b),((n-1)c,(...

    Text Solution

    |

  7. If |{:(a,5x,p),(b,10y,5),(c,15z,15):}| = 125, then find the value of |...

    Text Solution

    |

  8. If omega is the complex cube root of unity then |[1,1+i+omega^2,omeg...

    Text Solution

    |

  9. For positive numbers x,y,s the numberical value of the determinant |{:...

    Text Solution

    |

  10. If the value of (a + b + c)= 0 then determinant |{:(a-b-c,2a,2a),(2b,b...

    Text Solution

    |

  11. If a1, a2, a3,....... are in G.P. then the value of determinant |(log(...

    Text Solution

    |

  12. If adjB=A ,|P|=|Q|=1,t h e na d j(Q^(-1)B P^(-1)) is P Q b. Q A P c. P...

    Text Solution

    |

  13. If A = [{:(1,tan x),(-tanx,1):}] , then the value of |A' A^(-1)|

    Text Solution

    |

  14. The matrix [(lamda,-1,4),(-3,0,1),(-1,1,2)] is invertible if

    Text Solution

    |

  15. If A={:[(3,2),(0,1)]:}" then:(A^(-1))^(3)=

    Text Solution

    |

  16. The matrix [(lamda,-1,4),(-3,0,1),(-1,1,2)] is invertible if

    Text Solution

    |

  17. If A= [{:(1,0,3),(2,1,1),(0,0,2):}] , then the value of |adj(adj A) | ...

    Text Solution

    |

  18. If A = [{:(0,-1,2),(2,-2,0):}], B = [{:(0,1),(1,0),(1,1):}] and M = AB...

    Text Solution

    |

  19. If for AX=B, B=[[9], [52], [0]] and A^(-1)=[[3, -(1)/(2), -(1)/(2)], [...

    Text Solution

    |

  20. If matrix [(1,2,-1),(3,4,5),(2,6,7)] and its inverse is denoted by A^(...

    Text Solution

    |