Home
Class 12
MATHS
The value of the determinant |{:(1+x,2,3...

The value of the determinant `|{:(1+x,2,3,4),(1,2+x,3,4),(1,2,3+x,4),(1,2,3,4+x):}|`is

A

`x^(2)(x +10)`

B

`x^(3) (x + 10)`

C

`x^(4) (x+10)`

D

None ot these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} 1+x & 2 & 3 & 4 \\ 1 & 2+x & 3 & 4 \\ 1 & 2 & 3+x & 4 \\ 1 & 2 & 3 & 4+x \end{vmatrix} \] we will perform row operations and simplify the determinant step by step. ### Step 1: Row Operation We can simplify the determinant by performing the row operation \( R_1 \rightarrow R_1 - R_2 \). This will help us eliminate some elements in the first column. \[ D = \begin{vmatrix} (1+x) - 1 & 2 - (2+x) & 3 - 3 & 4 - 4 \\ 1 & 2+x & 3 & 4 \\ 1 & 2 & 3+x & 4 \\ 1 & 2 & 3 & 4+x \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} x & -x & 0 & 0 \\ 1 & 2+x & 3 & 4 \\ 1 & 2 & 3+x & 4 \\ 1 & 2 & 3 & 4+x \end{vmatrix} \] ### Step 2: Factor Out x Now, we can factor out \( x \) from the first row: \[ D = x \begin{vmatrix} 1 & -1 & 0 & 0 \\ 1 & 2+x & 3 & 4 \\ 1 & 2 & 3+x & 4 \\ 1 & 2 & 3 & 4+x \end{vmatrix} \] ### Step 3: Further Row Operations Next, we can perform \( R_2 \rightarrow R_2 - R_1 \), \( R_3 \rightarrow R_3 - R_1 \), and \( R_4 \rightarrow R_4 - R_1 \): \[ D = x \begin{vmatrix} 1 & -1 & 0 & 0 \\ 0 & 3 & 3 & 4 \\ 0 & 3 & 3+x & 4 \\ 0 & 3 & 3 & 4+x \end{vmatrix} \] ### Step 4: Expand the Determinant Now we can expand the determinant. Notice that the first column has zeros, which simplifies our calculations: \[ D = x \cdot 1 \cdot \begin{vmatrix} 3 & 3 & 4 \\ 3 & 3+x & 4 \\ 3 & 3 & 4+x \end{vmatrix} \] ### Step 5: Calculate the 3x3 Determinant Next, we can simplify this 3x3 determinant: \[ D = x \cdot \begin{vmatrix} 3 & 3 & 4 \\ 3 & 3+x & 4 \\ 3 & 3 & 4+x \end{vmatrix} \] We can perform \( R_2 \rightarrow R_2 - R_1 \) and \( R_3 \rightarrow R_3 - R_1 \): \[ D = x \begin{vmatrix} 3 & 3 & 4 \\ 0 & x & 0 \\ 0 & 0 & x \end{vmatrix} \] ### Step 6: Final Calculation The determinant simplifies to: \[ D = x \cdot 3 \cdot x \cdot x = 3x^3 \] ### Final Answer Thus, the value of the determinant is: \[ D = 3x^3 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

Consider the determinant D= |(x+2,2x+3,3x+4), (x+1, x+1, x+1), (0, 1, 3x +8)| If the determinant is expanded in the power of x, the coefficient of x is

Evalute the determinants in queations 1 and 2 : Find the values of x, if (i) |{:(2,4),(5,1):}|=|{:(2x,4),(6,x):}| (ii) |{:(2,3),(4,5):}|=|{:(x,3),(2x,5):}|

If |{:(1,x,x^(2)),(x,x^(2),1),(x^(2),1,x):}| =3 then the value of |{:(x^(3)-1,0,x-x^(4)),(0,x-x^(4),x^(3)-1),(x-x^(4),x^(3)-1,0):}| is

Determination the product [{:(,1,-1,1),(,1,-2,-2),(,2,1,3):}] [{:(,-4,4,4),(,-7,1,3),(,5,-3,-1):}] and use it to solve the system of equations x-y+z=4, x-2y-2z=9, 2x+y+3z=1

If the expression |{:(x^2+x+3,1,4),(2x^4+x^3+2x+1,2,3),(x^2+x,1,1):}| is equal to ax^4+bx^3+cx^2+dx+e , then the value of e is equal to

If the expression |{:(x^2+x+3,1,4),(2x^4+x^3+2x+1,2,3),(x^2+x,1,1):}| is equal to ax^4+bx^3+cx^2+dx+e , then the value of e is equal to

If x in R - {0} then minimum possible value of the expression (1)/(7)[(3x^(2)+(4)/(3x^(2))+1)^(2)-2(3x^(2)+(4)/(3x^(2)))+4]

DISHA PUBLICATION-DETERMINANTS-EXERCISE -1 CONCEPT BUILDER
  1. If z = |{:(-5,3+4i,5-7i),(3-4i,6,8+7i),(5+7i,8-7i,9):}|, then z is

    Text Solution

    |

  2. For how many values of 'x' in the closed interval [-4,-1] is the matri...

    Text Solution

    |

  3. The value of the determinant |{:(1+x,2,3,4),(1,2+x,3,4),(1,2,3+x,4),(1...

    Text Solution

    |

  4. Determinant |{:(a+b+nc,(n-1)a,(n-1)b),((n-1)c,b+c+na,(n-1)b),((n-1)c,(...

    Text Solution

    |

  5. If |{:(a,5x,p),(b,10y,5),(c,15z,15):}| = 125, then find the value of |...

    Text Solution

    |

  6. If omega is the complex cube root of unity then |[1,1+i+omega^2,omeg...

    Text Solution

    |

  7. For positive numbers x,y,s the numberical value of the determinant |{:...

    Text Solution

    |

  8. If the value of (a + b + c)= 0 then determinant |{:(a-b-c,2a,2a),(2b,b...

    Text Solution

    |

  9. If a1, a2, a3,....... are in G.P. then the value of determinant |(log(...

    Text Solution

    |

  10. If adjB=A ,|P|=|Q|=1,t h e na d j(Q^(-1)B P^(-1)) is P Q b. Q A P c. P...

    Text Solution

    |

  11. If A = [{:(1,tan x),(-tanx,1):}] , then the value of |A' A^(-1)|

    Text Solution

    |

  12. The matrix [(lamda,-1,4),(-3,0,1),(-1,1,2)] is invertible if

    Text Solution

    |

  13. If A={:[(3,2),(0,1)]:}" then:(A^(-1))^(3)=

    Text Solution

    |

  14. The matrix [(lamda,-1,4),(-3,0,1),(-1,1,2)] is invertible if

    Text Solution

    |

  15. If A= [{:(1,0,3),(2,1,1),(0,0,2):}] , then the value of |adj(adj A) | ...

    Text Solution

    |

  16. If A = [{:(0,-1,2),(2,-2,0):}], B = [{:(0,1),(1,0),(1,1):}] and M = AB...

    Text Solution

    |

  17. If for AX=B, B=[[9], [52], [0]] and A^(-1)=[[3, -(1)/(2), -(1)/(2)], [...

    Text Solution

    |

  18. If matrix [(1,2,-1),(3,4,5),(2,6,7)] and its inverse is denoted by A^(...

    Text Solution

    |

  19. If A = [{:(1,0),(1,1):}] , then value of A^(-a) is

    Text Solution

    |

  20. If A is a non-singular matrix of order 3, then |adj A| = |A|^(n) here ...

    Text Solution

    |