Home
Class 12
MATHS
Determinant |{:(a+b+nc,(n-1)a,(n-1)b),((...

Determinant `|{:(a+b+nc,(n-1)a,(n-1)b),((n-1)c,b+c+na,(n-1)b),((n-1)c,(n-1)a,c+a+nb):}|`is equal to

A

`(a + b+c )^(3)`

B

`n(a+b+c)^(3)`

C

`(n-1)(a+b+c)^(3)`

D

None ot these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} a+b+nc & (n-1)a & (n-1)b \\ (n-1)c & b+c+na & (n-1)b \\ (n-1)c & (n-1)a & c+a+nb \end{vmatrix} \] we will simplify it step by step. ### Step 1: Row Operation We will perform a row operation on the first row by subtracting the second row from it. \[ R_1 \leftarrow R_1 - R_2 \] This gives us: \[ D = \begin{vmatrix} (a+b+nc) - (n-1)c & (n-1)a - (b+c+na) & (n-1)b - (n-1)b \\ (n-1)c & b+c+na & (n-1)b \\ (n-1)c & (n-1)a & c+a+nb \end{vmatrix} \] Calculating the first row: 1. First element: \( (a+b+nc) - (n-1)c = a + b + c + c - nc = a + b + c \) 2. Second element: \( (n-1)a - (b+c+na) = (n-1)a - b - c - na = -b - c + a - a = -b - c \) 3. Third element: \( (n-1)b - (n-1)b = 0 \) Thus, we have: \[ D = \begin{vmatrix} a+b+c & -b-c & 0 \\ (n-1)c & b+c+na & (n-1)b \\ (n-1)c & (n-1)a & c+a+nb \end{vmatrix} \] ### Step 2: Factor Out Common Terms Now we can factor out \( a + b + c \) from the first row: \[ D = (a+b+c) \begin{vmatrix} 1 & -\frac{b+c}{a+b+c} & 0 \\ (n-1)c & b+c+na & (n-1)b \\ (n-1)c & (n-1)a & c+a+nb \end{vmatrix} \] ### Step 3: Further Row Operations Next, we will perform another row operation on the second row by subtracting the third row from it: \[ R_2 \leftarrow R_2 - R_3 \] Calculating the second row: 1. First element: \( (n-1)c - (n-1)c = 0 \) 2. Second element: \( (b+c+na) - (n-1)a = b + c + na - na + a = b + c + a \) 3. Third element: \( (n-1)b - (c+a+nb) = (n-1)b - c - a - nb = -c - a + b - b = -c - a \) Thus, we have: \[ D = (a+b+c) \begin{vmatrix} 1 & -\frac{b+c}{a+b+c} & 0 \\ 0 & b+c+a & -c-a \\ (n-1)c & (n-1)a & c+a+nb \end{vmatrix} \] ### Step 4: Calculate the Determinant Now we can calculate the determinant of the 2x2 matrix: \[ D = (a+b+c) \cdot \begin{vmatrix} b+c+a & -c-a \\ (n-1)c & c+a+nb \end{vmatrix} \] Calculating this determinant: \[ = (a+b+c) \left((b+c+a)(c+a+nb) - (-c-a)(n-1)c\right) \] ### Step 5: Simplify After simplifying, we will find that: \[ D = n(a+b+c)^3 \] ### Final Answer Thus, the value of the determinant is: \[ \boxed{n(a+b+c)^3} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

Prove tha following |{:(a+b+nc,na-a,nb-b),(nc-c,b+c+na,nb-b),(nc-c,na-a,c+a+nb):}|=n(a+b+c)^(3) .

(n+2)C_(0)(2^(n+1))-(n+1)C_(1)(2^(n))+(n)C_(2)(2^(n-1))- is equal to

If 3^n is a factor of the determinant |{:(1,1,1),(.^nC_1,.^(n+3)C_1,.^(n+6)C_1),(.^nC_2, .^(n+3)C_2, .^(n+6)C_2):}| then the maximum value of n is ……..

sum_(n=6)^(100)(*^(n+1)C_(4))/(^nC_(5)*n-1)C_(5) is equal to

sum_(n=6)^(100)(*^(n+1)C_(4))/(^nC_(5)*n-1)C_(5) is equal to

If a+b=1, then sum_(n=0)^(n)C(n,r)a^(r)b^(n-r) is equal to '

Let a,b and c be such that (b+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c,c-1,c+1)|+|(a+1,b+1,c-1),(a-1, b-1,c+1),((-1)^(n+2)a , (-1)^(n+1)b,(-1)^n c)|=0 , then the value of 'n' is :

If (n-1)C_(6)+(n-1)C_(7)>nC_(6) then

DISHA PUBLICATION-DETERMINANTS-EXERCISE -1 CONCEPT BUILDER
  1. For how many values of 'x' in the closed interval [-4,-1] is the matri...

    Text Solution

    |

  2. The value of the determinant |{:(1+x,2,3,4),(1,2+x,3,4),(1,2,3+x,4),(1...

    Text Solution

    |

  3. Determinant |{:(a+b+nc,(n-1)a,(n-1)b),((n-1)c,b+c+na,(n-1)b),((n-1)c,(...

    Text Solution

    |

  4. If |{:(a,5x,p),(b,10y,5),(c,15z,15):}| = 125, then find the value of |...

    Text Solution

    |

  5. If omega is the complex cube root of unity then |[1,1+i+omega^2,omeg...

    Text Solution

    |

  6. For positive numbers x,y,s the numberical value of the determinant |{:...

    Text Solution

    |

  7. If the value of (a + b + c)= 0 then determinant |{:(a-b-c,2a,2a),(2b,b...

    Text Solution

    |

  8. If a1, a2, a3,....... are in G.P. then the value of determinant |(log(...

    Text Solution

    |

  9. If adjB=A ,|P|=|Q|=1,t h e na d j(Q^(-1)B P^(-1)) is P Q b. Q A P c. P...

    Text Solution

    |

  10. If A = [{:(1,tan x),(-tanx,1):}] , then the value of |A' A^(-1)|

    Text Solution

    |

  11. The matrix [(lamda,-1,4),(-3,0,1),(-1,1,2)] is invertible if

    Text Solution

    |

  12. If A={:[(3,2),(0,1)]:}" then:(A^(-1))^(3)=

    Text Solution

    |

  13. The matrix [(lamda,-1,4),(-3,0,1),(-1,1,2)] is invertible if

    Text Solution

    |

  14. If A= [{:(1,0,3),(2,1,1),(0,0,2):}] , then the value of |adj(adj A) | ...

    Text Solution

    |

  15. If A = [{:(0,-1,2),(2,-2,0):}], B = [{:(0,1),(1,0),(1,1):}] and M = AB...

    Text Solution

    |

  16. If for AX=B, B=[[9], [52], [0]] and A^(-1)=[[3, -(1)/(2), -(1)/(2)], [...

    Text Solution

    |

  17. If matrix [(1,2,-1),(3,4,5),(2,6,7)] and its inverse is denoted by A^(...

    Text Solution

    |

  18. If A = [{:(1,0),(1,1):}] , then value of A^(-a) is

    Text Solution

    |

  19. If A is a non-singular matrix of order 3, then |adj A| = |A|^(n) here ...

    Text Solution

    |

  20. If A = [{:(2,4,5),(4,8,10),(-6,-12,-15):}]. Then rank of A is equal to...

    Text Solution

    |