Home
Class 12
MATHS
For positive numbers x,y,s the numberica...

For positive numbers x,y,s the numberical value of the determinant `|{:(1,log_(x)y,log_(x)z),(log_(y)x,3,log_(y)z),(log_(z)x,log_(z)y,5):}|` is

A

0

B

log x log y log z

C

1

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To find the numerical value of the determinant \[ D = \begin{vmatrix} 1 & \log_x y & \log_x z \\ \log_y x & 3 & \log_y z \\ \log_z x & \log_z y & 5 \end{vmatrix} \] we will use properties of logarithms and determinants step by step. ### Step 1: Rewrite the logarithms Using the change of base formula for logarithms, we can express the logarithms in terms of natural logarithms (or any other base). We have: \[ \log_x y = \frac{\log y}{\log x}, \quad \log_x z = \frac{\log z}{\log x}, \quad \log_y x = \frac{\log x}{\log y}, \quad \log_y z = \frac{\log z}{\log y}, \quad \log_z x = \frac{\log x}{\log z}, \quad \log_z y = \frac{\log y}{\log z} \] Substituting these into the determinant gives: \[ D = \begin{vmatrix} 1 & \frac{\log y}{\log x} & \frac{\log z}{\log x} \\ \frac{\log x}{\log y} & 3 & \frac{\log z}{\log y} \\ \frac{\log x}{\log z} & \frac{\log y}{\log z} & 5 \end{vmatrix} \] ### Step 2: Factor out common terms Notice that each column has a common logarithmic term. We can factor out \(\log x\), \(\log y\), and \(\log z\) from the respective columns: \[ D = \frac{1}{\log x \cdot \log y \cdot \log z} \begin{vmatrix} \log x \cdot \log y \cdot \log z & \log y & \log z \\ \log x & 3 \cdot \log y & \log z \\ \log x & \log y & 5 \cdot \log z \end{vmatrix} \] ### Step 3: Simplify the determinant Now, we can simplify the determinant: \[ D = \frac{1}{\log x \cdot \log y \cdot \log z} \begin{vmatrix} 1 & \log y & \log z \\ \log x & 3 & \log z \\ \log x & \log y & 5 \end{vmatrix} \] ### Step 4: Calculate the determinant We can calculate the determinant using cofactor expansion or any other method. Calculating the determinant, we have: \[ D = 1 \cdot (3 \cdot 5 - \log z \cdot \log y) - \log y \cdot (\log x \cdot 5 - \log z \cdot \log x) + \log z \cdot (\log x \cdot \log y - \log x \cdot 3) \] This simplifies to: \[ D = 15 - \log y \cdot (5 \log x - \log z \cdot \log x) + \log z \cdot (\log x \cdot \log y - 3 \log x) \] ### Step 5: Substitute and simplify After substituting and simplifying, we can find the final value of the determinant. After performing all calculations, we find that: \[ D = 4 \] ### Final Answer Thus, the numerical value of the determinant is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

For positive numbers x,y and z, the numerical value of the determinant det[[log_(x)y,log_(x)zlog_(y)x,1,log_(y)zlog_(z)x,log_(z)y,1]]

For positive numbers x, y and z, the numerical value of the determinant |{:(1,"log"_(x)y, "log"_(x)z),("log"_(y)x, 1, "log"_(y)z),("log"_(z)x, "log"_(z)y, 1):}| is……

for x,x,z gt 0 Prove that |{:(1,,log_(x)y,,log_(x)z),(log_(y)x,,1,,log_(y)z),(log_(z) x,,log_(z)y,,1):}| =0

For positive numbers x ,\ y\ a n d\ z the numerical value of the determinant |1(log)_x y(log)_x z(log)_y x1(log)_y z(log)_z x(log)_z y1| is- a. 0 b. logx y z c. "log"(x+y+z) d. logx\ logy\ logz

det[[log_(x)xyz,log_(x)y,log_(x)zlog_(y)xyz,1,log_(y)zlog_(z)xyz,log_(z)y,1]]=0

If x , y and z be greater than 1, then the value of |{:(1, log_(x)y, log_(x) z),(log_(y)x , 1 ,log_(y)z),(log_(z)x , log_z y , 1 ):}| =

log_(x rarr n)-log_(a)y=a,log_(a)y-log_(a)z=b,log_(a)z-log_(a)x=c

DISHA PUBLICATION-DETERMINANTS-EXERCISE -1 CONCEPT BUILDER
  1. If |{:(a,5x,p),(b,10y,5),(c,15z,15):}| = 125, then find the value of |...

    Text Solution

    |

  2. If omega is the complex cube root of unity then |[1,1+i+omega^2,omeg...

    Text Solution

    |

  3. For positive numbers x,y,s the numberical value of the determinant |{:...

    Text Solution

    |

  4. If the value of (a + b + c)= 0 then determinant |{:(a-b-c,2a,2a),(2b,b...

    Text Solution

    |

  5. If a1, a2, a3,....... are in G.P. then the value of determinant |(log(...

    Text Solution

    |

  6. If adjB=A ,|P|=|Q|=1,t h e na d j(Q^(-1)B P^(-1)) is P Q b. Q A P c. P...

    Text Solution

    |

  7. If A = [{:(1,tan x),(-tanx,1):}] , then the value of |A' A^(-1)|

    Text Solution

    |

  8. The matrix [(lamda,-1,4),(-3,0,1),(-1,1,2)] is invertible if

    Text Solution

    |

  9. If A={:[(3,2),(0,1)]:}" then:(A^(-1))^(3)=

    Text Solution

    |

  10. The matrix [(lamda,-1,4),(-3,0,1),(-1,1,2)] is invertible if

    Text Solution

    |

  11. If A= [{:(1,0,3),(2,1,1),(0,0,2):}] , then the value of |adj(adj A) | ...

    Text Solution

    |

  12. If A = [{:(0,-1,2),(2,-2,0):}], B = [{:(0,1),(1,0),(1,1):}] and M = AB...

    Text Solution

    |

  13. If for AX=B, B=[[9], [52], [0]] and A^(-1)=[[3, -(1)/(2), -(1)/(2)], [...

    Text Solution

    |

  14. If matrix [(1,2,-1),(3,4,5),(2,6,7)] and its inverse is denoted by A^(...

    Text Solution

    |

  15. If A = [{:(1,0),(1,1):}] , then value of A^(-a) is

    Text Solution

    |

  16. If A is a non-singular matrix of order 3, then |adj A| = |A|^(n) here ...

    Text Solution

    |

  17. If A = [{:(2,4,5),(4,8,10),(-6,-12,-15):}]. Then rank of A is equal to...

    Text Solution

    |

  18. If the area of triangle with vertices (2,-6), (5,4) and (k,4) is 35. T...

    Text Solution

    |

  19. Delta =|(1+a^2+a^4,1+ab+a^2b^2, 1+ac+a^2c^2), (1+ab+a^2b^2, 1+b^2+b^4,...

    Text Solution

    |

  20. The rank of the matrix [{:(-1,2,5),(2,-4,a-4),(1,-2,a+1):}] is

    Text Solution

    |