Home
Class 12
MATHS
Delta =|(1+a^2+a^4,1+ab+a^2b^2, 1+ac+a^2...

`Delta =|(1+a^2+a^4,1+ab+a^2b^2, 1+ac+a^2c^2), (1+ab+a^2b^2, 1+b^2+b^4, 1+bc+b^2c^2),(1+ac+a^2c^2, 1+bc+b^2c^2, 1+c^2c^4)|` is equal to

A

`-1`

B

1

C

2

D

`-2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

Delta=|{:(1+a^2+a^4,1+ab+a^2b^2,1+ac+a^2c^2),(1+ab+a^2b^2,1+b^2+b^4,1+bc+b^2c^2),(1+ac+a^2c^2,1+bc+b^2c^2,1+c^2+c^4):}| is equal to

Delta=|[1+a^(2)+a^(4),1+ab+a^(2)b^(2),1+ac+a^(2)c^(2)1+ab+a^(2)b^(2),1+b^(2)+b^(4),1+bc+b^(2)c^(2)1+ac+a^(2)c^(2),1+bc+b^(2)c^(2),1+c^(2)c^(4) is equal to

[[ Prove that 1+a^(2)+a^(2)b^(2),1+ab+a^(2)b^(2),1+ac+a^(2)c^(2)1+ab+a^(2)b^(2),1+b^(2)+b^(4),1+bc+b^(2)c^(2)1+ac+a^(2)c^(2),1+bc+b^(2)c^(2),1+c^(2)+c^(2)]]=(a-b)^(2)(b-c)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-

If a, b and c are distinct positive real numbers such that Delta_(1) = |(a,b,c),(b,c,a),(c,a,b)| and Delta_(2) = |(bc - a^2, ac -b^2, ab - c^2),(ac - b^2, ab - c^2, bc -a^2),(ab -c^2, bc - a^2, ac - b^2)| , then

det[[1,a,a^(2)+bc1,b,b^(2)+ac1,c,c^(2)+ab]] is equal to

Prove that: |(a^2+1, ab, ac),(ab, b^2+1, bc),(ac, bc, c^2+1)|=1+a^2+b^2+c^2

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to

DISHA PUBLICATION-DETERMINANTS-EXERCISE -1 CONCEPT BUILDER
  1. If A = [{:(2,4,5),(4,8,10),(-6,-12,-15):}]. Then rank of A is equal to...

    Text Solution

    |

  2. If the area of triangle with vertices (2,-6), (5,4) and (k,4) is 35. T...

    Text Solution

    |

  3. Delta =|(1+a^2+a^4,1+ab+a^2b^2, 1+ac+a^2c^2), (1+ab+a^2b^2, 1+b^2+b^4,...

    Text Solution

    |

  4. The rank of the matrix [{:(-1,2,5),(2,-4,a-4),(1,-2,a+1):}] is

    Text Solution

    |

  5. If y = |{:(sin x , cos x , sin x),(cos x,-sin x, cos x),(x, 1, 1):}|, ...

    Text Solution

    |

  6. Consider the system of linear equations a(1)x+b(1)y+ c(1)z+d(1)=0, ...

    Text Solution

    |

  7. " If " Delta(1) =|{:(x,,b,,b),(a,,x,,b),(a,,a,,x):}|" and " Delta(2)...

    Text Solution

    |

  8. Let alpha be a repeated root of a quadratic equation f(x)=0a n dA(x...

    Text Solution

    |

  9. If the system of equations x – ky – z = 0, kx – y – z=0, x + y – z = 0...

    Text Solution

    |

  10. If the system of linear equations x + 2ay + az = 0 x + 3by + bz = ...

    Text Solution

    |

  11. If the system of equations, a^(2) x - ay = 1 - a and bx + (3-2b) y = 3...

    Text Solution

    |

  12. Consider the system of equations : x + ay = 0, y + az = 0 and z + ax=0...

    Text Solution

    |

  13. The system of linear equations x + y + z = 2 2x + y -z = 3 3x + ...

    Text Solution

    |

  14. if the system of equation ax+y+z=0, x+by=z=0,and x+y+cz=0 (a,b,c!=1) h...

    Text Solution

    |

  15. If the system of linear equations x + 2ay + az = 0 x + 3by + bz = ...

    Text Solution

    |

  16. The system of equations alpha x + y + z = alpha - 1 x + alpha y + =...

    Text Solution

    |

  17. If lt 1 and the system of equations x+y-1=0 2x-y-c=0 and -bx+3by-c =0 ...

    Text Solution

    |

  18. For what value of m does the system of equations 3x+m y=m ,2x-5y=20 ha...

    Text Solution

    |

  19. The system of simulataneous equations kx + 2y -z = 1 (k -1) y -2z ...

    Text Solution

    |

  20. Consider the system of linear equations: x(1) + 2x(2) + x(3) = 3 2...

    Text Solution

    |