Home
Class 12
MATHS
If y = |{:(sin x , cos x , sin x),(cos x...

If y = `|{:(sin x , cos x , sin x),(cos x,-sin x, cos x),(x, 1, 1):}|`, then `(dy)/(dx)` is

A

0

B

1

C

`-1`

D

None ot these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the determinant given by: \[ y = \begin{vmatrix} \sin x & \cos x & \sin x \\ \cos x & -\sin x & \cos x \\ x & 1 & 1 \end{vmatrix} \] ### Step 1: Expand the Determinant We will expand the determinant using the formula for 3x3 determinants: \[ y = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where \( a, b, c \) are the elements of the first row, and \( d, e, f, g, h, i \) are the elements of the second and third rows respectively. For our determinant: \[ y = \sin x \begin{vmatrix} -\sin x & \cos x \\ 1 & 1 \end{vmatrix} - \cos x \begin{vmatrix} \cos x & \cos x \\ x & 1 \end{vmatrix} + \sin x \begin{vmatrix} \cos x & -\sin x \\ x & 1 \end{vmatrix} \] ### Step 2: Calculate the 2x2 Determinants 1. For the first determinant: \[ \begin{vmatrix} -\sin x & \cos x \\ 1 & 1 \end{vmatrix} = (-\sin x)(1) - (\cos x)(1) = -\sin x - \cos x \] 2. For the second determinant: \[ \begin{vmatrix} \cos x & \cos x \\ x & 1 \end{vmatrix} = (\cos x)(1) - (\cos x)(x) = \cos x - x \cos x = \cos x(1 - x) \] 3. For the third determinant: \[ \begin{vmatrix} \cos x & -\sin x \\ x & 1 \end{vmatrix} = (\cos x)(1) - (-\sin x)(x) = \cos x + x \sin x \] ### Step 3: Substitute Back into the Determinant Expression Now substituting back into the expression for \( y \): \[ y = \sin x (-\sin x - \cos x) - \cos x (\cos x(1 - x)) + \sin x (\cos x + x \sin x) \] ### Step 4: Simplify the Expression Now we simplify: \[ y = -\sin^2 x - \sin x \cos x - \cos^2 x(1 - x) + \sin x \cos x + x \sin^2 x \] Combining like terms: \[ y = -\sin^2 x - \cos^2 x + x \sin^2 x \] Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ y = x \sin^2 x - 1 \] ### Step 5: Differentiate \( y \) Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(x \sin^2 x - 1) \] Using the product rule: \[ \frac{dy}{dx} = \sin^2 x + x \cdot 2 \sin x \cos x \] Thus, we have: \[ \frac{dy}{dx} = \sin^2 x + 2x \sin x \cos x \] ### Final Answer The derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \sin^2 x + 2x \sin x \cos x \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

If y=det[[sin x,cos x,sin xcos x,-sin x,cos xx,1,1]], find (dy)/(dx)

If y=det[[sin x,cos x,sin xcos x,-sin x,cos xx,1,1]]=tind(dy)/(dx)

int(cos x+sin x)/(cos x-sin x)(1-sin2x)dx

If y= (sinx -cos x )^((sin x +cos x ) ),then (dy)/(dx)=

If sin (x+y) +cos (x+y) =1,then (dy)/(dx)=

y=(cos x+sin x)/(cos x-sin x) then dy/dx =

If y=(sin x)/(x+cos x) , then find (dy)/(dx) .

DISHA PUBLICATION-DETERMINANTS-EXERCISE -1 CONCEPT BUILDER
  1. If the area of triangle with vertices (2,-6), (5,4) and (k,4) is 35. T...

    Text Solution

    |

  2. Delta =|(1+a^2+a^4,1+ab+a^2b^2, 1+ac+a^2c^2), (1+ab+a^2b^2, 1+b^2+b^4,...

    Text Solution

    |

  3. The rank of the matrix [{:(-1,2,5),(2,-4,a-4),(1,-2,a+1):}] is

    Text Solution

    |

  4. If y = |{:(sin x , cos x , sin x),(cos x,-sin x, cos x),(x, 1, 1):}|, ...

    Text Solution

    |

  5. Consider the system of linear equations a(1)x+b(1)y+ c(1)z+d(1)=0, ...

    Text Solution

    |

  6. " If " Delta(1) =|{:(x,,b,,b),(a,,x,,b),(a,,a,,x):}|" and " Delta(2)...

    Text Solution

    |

  7. Let alpha be a repeated root of a quadratic equation f(x)=0a n dA(x...

    Text Solution

    |

  8. If the system of equations x – ky – z = 0, kx – y – z=0, x + y – z = 0...

    Text Solution

    |

  9. If the system of linear equations x + 2ay + az = 0 x + 3by + bz = ...

    Text Solution

    |

  10. If the system of equations, a^(2) x - ay = 1 - a and bx + (3-2b) y = 3...

    Text Solution

    |

  11. Consider the system of equations : x + ay = 0, y + az = 0 and z + ax=0...

    Text Solution

    |

  12. The system of linear equations x + y + z = 2 2x + y -z = 3 3x + ...

    Text Solution

    |

  13. if the system of equation ax+y+z=0, x+by=z=0,and x+y+cz=0 (a,b,c!=1) h...

    Text Solution

    |

  14. If the system of linear equations x + 2ay + az = 0 x + 3by + bz = ...

    Text Solution

    |

  15. The system of equations alpha x + y + z = alpha - 1 x + alpha y + =...

    Text Solution

    |

  16. If lt 1 and the system of equations x+y-1=0 2x-y-c=0 and -bx+3by-c =0 ...

    Text Solution

    |

  17. For what value of m does the system of equations 3x+m y=m ,2x-5y=20 ha...

    Text Solution

    |

  18. The system of simulataneous equations kx + 2y -z = 1 (k -1) y -2z ...

    Text Solution

    |

  19. Consider the system of linear equations: x(1) + 2x(2) + x(3) = 3 2...

    Text Solution

    |

  20. If a system of three linear equations x+4a y+a=0,x+3b y+b=0,a n dx+2c ...

    Text Solution

    |