Home
Class 12
MATHS
Consider the system of linear equations ...

Consider the system of linear equations
`a_(1)x+b_(1)y+ c_(1)z+d_(1)=0`,
` a_(2)x+b_(2)y+ c_(2)z+d_(2)= 0`,
`a_(3)x+b_(3)y +c_(3)z+d_(3)=0`, Let us denote by `Delta` (a,b,c) the determinant `|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|` , if `Delta (a,b,c) `# 0, then the value of x in the unique solution of the above equations is

A

`(Delta(bcd))/(Delta(abc))`

B

`(-Delta(bcd))/(Delta(abc))`

C

`(Delta(acd))/(Delta(abc))`

D

`(Delta(abd))/(Delta(abc))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x \) in the unique solution of the given system of linear equations, we can follow these steps: ### Step 1: Write the System of Equations The given system of linear equations is: \[ \begin{align*} a_1 x + b_1 y + c_1 z + d_1 &= 0 \\ a_2 x + b_2 y + c_2 z + d_2 &= 0 \\ a_3 x + b_3 y + c_3 z + d_3 &= 0 \end{align*} \] ### Step 2: Rearranging the Equations We can rearrange these equations to isolate the constants on one side: \[ \begin{align*} a_1 x + b_1 y + c_1 z &= -d_1 \\ a_2 x + b_2 y + c_2 z &= -d_2 \\ a_3 x + b_3 y + c_3 z &= -d_3 \end{align*} \] ### Step 3: Form the Coefficient Matrix and the Determinants Let \( \Delta \) be the determinant of the coefficients of \( x, y, z \): \[ \Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \] If \( \Delta \neq 0 \), the system has a unique solution. ### Step 4: Calculate the Determinants for \( x, y, z \) We will compute the determinants to find \( x, y, z \): - For \( x \): \[ D_x = \begin{vmatrix} -d_1 & b_1 & c_1 \\ -d_2 & b_2 & c_2 \\ -d_3 & b_3 & c_3 \end{vmatrix} \] - For \( y \): \[ D_y = \begin{vmatrix} a_1 & -d_1 & c_1 \\ a_2 & -d_2 & c_2 \\ a_3 & -d_3 & c_3 \end{vmatrix} \] - For \( z \): \[ D_z = \begin{vmatrix} a_1 & b_1 & -d_1 \\ a_2 & b_2 & -d_2 \\ a_3 & b_3 & -d_3 \end{vmatrix} \] ### Step 5: Apply Cramer's Rule According to Cramer's Rule, the solutions for \( x, y, z \) are given by: \[ x = \frac{D_x}{\Delta}, \quad y = \frac{D_y}{\Delta}, \quad z = \frac{D_z}{\Delta} \] ### Step 6: Substitute to Find \( x \) Thus, the value of \( x \) in the unique solution is: \[ x = \frac{D_x}{\Delta} \] ### Summary of the Solution The value of \( x \) in the unique solution of the given system of equations is: \[ x = \frac{D_x}{\Delta} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -2 CONCEPT APPLICATOR|30 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

Consider the system of linear equations , a_(1)x+b_(1)y+c_(1)z+d_(1)=0 , a_(2)x+b_(2)y+c_(2)z+d_(2)=0 , a_(3)x+b_(3)y+c_(3)2+d_(3)=0 Let us denote by Delta(a,b,c) the determinant |[a_(1),b_(1),c_(1)],[a_(2),b_(2),c_(2)],[a_(3),b_(2),c_(3)]| if Delta(a,b,c)!=0, then the value of x in the unique solution of the above equations is

if Delta=det[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

if quad /_=[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

Consider the system of equations a_(1) x + b_(1) y + c_(1) z = 0 a_(2) x + b_(2) y + c_(2) z = 0 a_(3) x + b_(3) y + c_(3) z = 0 If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =0 , then the system has

If Delta is the value of the determinant |(a_(1), b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| then what is the value of the following determinant? |(pa_(1), b_(1), qc_(1)),(pa_(2), b_(2), qc_(2)),(pa_(3), b_(3),qc_(3))| (p ne 0 or 1, q ne 0 or 1)

Cosnsider the system of equation a_(1)x+b_(1)y+c_(1)z=0, a_(2)x+b_(2)y+c_(2)z=0, a_(3)x+b_(3)y+c_(3)z=0 if |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0 , then the system has

If the system of equations a_(1)x+b_(1)y+c_(1),a_(2)x+b_(2)y+c_(2)=0 is inconsistent,(a_(1))/(a_(2))=(b_(1))/(b_(2))!=(c_(1))/(c_(2))

if a_(1)b_(1)c_(1), a_(2)b_(2)c_(2)" and " a_(3)b_(3)c_(3) are three-digit even natural numbers and Delta = |{:(c_(1),,a_(1),,b_(1)),(c_(2),,a_(2),,b_(2)),(c_(3),,a_(3),,b_(3)):}|" then " Delta is

DISHA PUBLICATION-DETERMINANTS-EXERCISE -1 CONCEPT BUILDER
  1. If the area of triangle with vertices (2,-6), (5,4) and (k,4) is 35. T...

    Text Solution

    |

  2. Delta =|(1+a^2+a^4,1+ab+a^2b^2, 1+ac+a^2c^2), (1+ab+a^2b^2, 1+b^2+b^4,...

    Text Solution

    |

  3. The rank of the matrix [{:(-1,2,5),(2,-4,a-4),(1,-2,a+1):}] is

    Text Solution

    |

  4. If y = |{:(sin x , cos x , sin x),(cos x,-sin x, cos x),(x, 1, 1):}|, ...

    Text Solution

    |

  5. Consider the system of linear equations a(1)x+b(1)y+ c(1)z+d(1)=0, ...

    Text Solution

    |

  6. " If " Delta(1) =|{:(x,,b,,b),(a,,x,,b),(a,,a,,x):}|" and " Delta(2)...

    Text Solution

    |

  7. Let alpha be a repeated root of a quadratic equation f(x)=0a n dA(x...

    Text Solution

    |

  8. If the system of equations x – ky – z = 0, kx – y – z=0, x + y – z = 0...

    Text Solution

    |

  9. If the system of linear equations x + 2ay + az = 0 x + 3by + bz = ...

    Text Solution

    |

  10. If the system of equations, a^(2) x - ay = 1 - a and bx + (3-2b) y = 3...

    Text Solution

    |

  11. Consider the system of equations : x + ay = 0, y + az = 0 and z + ax=0...

    Text Solution

    |

  12. The system of linear equations x + y + z = 2 2x + y -z = 3 3x + ...

    Text Solution

    |

  13. if the system of equation ax+y+z=0, x+by=z=0,and x+y+cz=0 (a,b,c!=1) h...

    Text Solution

    |

  14. If the system of linear equations x + 2ay + az = 0 x + 3by + bz = ...

    Text Solution

    |

  15. The system of equations alpha x + y + z = alpha - 1 x + alpha y + =...

    Text Solution

    |

  16. If lt 1 and the system of equations x+y-1=0 2x-y-c=0 and -bx+3by-c =0 ...

    Text Solution

    |

  17. For what value of m does the system of equations 3x+m y=m ,2x-5y=20 ha...

    Text Solution

    |

  18. The system of simulataneous equations kx + 2y -z = 1 (k -1) y -2z ...

    Text Solution

    |

  19. Consider the system of linear equations: x(1) + 2x(2) + x(3) = 3 2...

    Text Solution

    |

  20. If a system of three linear equations x+4a y+a=0,x+3b y+b=0,a n dx+2c ...

    Text Solution

    |