Home
Class 12
MATHS
f'(x) = |{:(cos x , x , 1),(2sin x,x^(2)...

`f'(x) = |{:(cos x , x , 1),(2sin x,x^(2),2x),(tan x, x,1):}|` . The value of `underset(x rarr 0)(lim) (f(x))/(x)` is equal to

A

1

B

`-1`

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{x \to 0} \frac{f(x)}{x} \] where \( f'(x) = \left| \begin{array}{ccc} \cos x & x & 1 \\ 2 \sin x & x^2 & 2x \\ \tan x & x & 1 \end{array} \right| \). ### Step 1: Calculate the Determinant We need to compute the determinant \( f'(x) \): \[ f'(x) = \left| \begin{array}{ccc} \cos x & x & 1 \\ 2 \sin x & x^2 & 2x \\ \tan x & x & 1 \end{array} \right| \] Using the formula for the determinant of a \( 3 \times 3 \) matrix, we can expand it: \[ f'(x) = \cos x \left| \begin{array}{cc} x^2 & 2x \\ x & 1 \end{array} \right| - x \left| \begin{array}{cc} 2 \sin x & 2x \\ \tan x & 1 \end{array} \right| + 1 \left| \begin{array}{cc} 2 \sin x & x^2 \\ \tan x & x \end{array} \right| \] ### Step 2: Calculate the 2x2 Determinants 1. For the first determinant: \[ \left| \begin{array}{cc} x^2 & 2x \\ x & 1 \end{array} \right| = x^2 \cdot 1 - 2x \cdot x = x^2 - 2x^2 = -x^2 \] 2. For the second determinant: \[ \left| \begin{array}{cc} 2 \sin x & 2x \\ \tan x & 1 \end{array} \right| = 2 \sin x \cdot 1 - 2x \cdot \tan x = 2 \sin x - 2x \tan x \] 3. For the third determinant: \[ \left| \begin{array}{cc} 2 \sin x & x^2 \\ \tan x & x \end{array} \right| = 2 \sin x \cdot x - x^2 \cdot \tan x = 2x \sin x - x^2 \tan x \] ### Step 3: Substitute Back into the Determinant Now substituting these back into the expression for \( f'(x) \): \[ f'(x) = \cos x (-x^2) - x (2 \sin x - 2x \tan x) + (2x \sin x - x^2 \tan x) \] ### Step 4: Simplify the Expression Simplifying the expression: \[ f'(x) = -x^2 \cos x - 2x \sin x + 2x^2 \tan x + 2x \sin x - x^2 \tan x \] The \( -2x \sin x + 2x \sin x \) cancels out: \[ f'(x) = -x^2 \cos x + x^2 \tan x \] ### Step 5: Factor Out \( x^2 \) Factoring out \( x^2 \): \[ f'(x) = x^2 (\tan x - \cos x) \] ### Step 6: Find \( f(x) \) To find \( f(x) \), we need to integrate \( f'(x) \): \[ f(x) = \int f'(x) \, dx \] However, for the limit we are interested in, we can directly evaluate: ### Step 7: Evaluate the Limit Now, we need to evaluate the limit: \[ \lim_{x \to 0} \frac{f'(x)}{x} \] Substituting \( f'(x) = x^2 (\tan x - \cos x) \): \[ \lim_{x \to 0} \frac{x^2 (\tan x - \cos x)}{x} = \lim_{x \to 0} x (\tan x - \cos x) \] ### Step 8: Use L'Hospital's Rule if Necessary As \( x \to 0 \), both \( \tan x \) and \( \cos x \) approach 0. We can apply L'Hospital's Rule: \[ \lim_{x \to 0} \frac{\tan x - \cos x}{1/x} = \lim_{x \to 0} \frac{\sec^2 x + \sin x}{-1/x^2} \] Evaluating this limit yields 0 as \( x \to 0 \). ### Final Answer Thus, the value of \[ \lim_{x \to 0} \frac{f(x)}{x} = 0. \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -1 CONCEPT BUILDER|65 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)(sin^(-1)(2x)-tan^(-1)x)/(sin x) is equal to:

The value of lim_(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

The value of lim_(x rarr0)((sin x)^((1)/(x))+((1)/(x))^(sin x)) equals

If f(x) = |(sin x,cos x,tan x),(x^(3),x^(2),x),(2x,1,1)|, " then " lim_(x rarr 0) (f (x))/(x^(2)) , is

The limit underset( x rarr0 ) ( "lim") ( 1- cos x sqrt( cos 2x) )/( x^(2)) is equal to

the value of lim_(x rarr0)(x tan2x-2x tan x)/((1-cos2x)^(2)) is equal to

let f(x)=det[[cos x,x,12sin x,x^(2),2xtan x,x,1]]. then lim_(x rarr0)(f'(x))/(x)=

lim_(x rarr0)((1-cos2x)(3+cos x))/(x tan4x) is equal to:

DISHA PUBLICATION-DETERMINANTS-EXERCISE -2 CONCEPT APPLICATOR
  1. If |{:(x^(n),x^(x+2),x^(2n)),(1,x^(a),a),(x^(n+5),x^(a+6),x^(2n+5)):}|...

    Text Solution

    |

  2. The value of the determinant |{:(1^(2),2^(2),3^(2),4^(2)),(2^(2),3^(2)...

    Text Solution

    |

  3. The value of the determinant |{:(1 ,(5^(2x)-5^(-2x))^(2),(5^(2x)-5^(-2...

    Text Solution

    |

  4. If a^(2)+b^(2)+c^(2)=-2 and |{:(1+a^(2)x,(1+b^(2))x,(1+c^(2))x),((...

    Text Solution

    |

  5. If A1B1C1 , A2B2C2 and A3B3C3 are three digit numbers, each of which ...

    Text Solution

    |

  6. If Sr = alpha^r + beta^r + gamma^r then show that |[S0,S1,S2],[S1,S2,S...

    Text Solution

    |

  7. If f(x) = |{:(cos^(2)x, cosx.sinx, -sin x),(cos x sinx ,sin^(2)x ,cos ...

    Text Solution

    |

  8. the value of the determinant |{:((a(1)-b(1))^(2),,(a(1)-b(2))^(2),,...

    Text Solution

    |

  9. f'(x) = |{:(cos x , x , 1),(2sin x,x^(2),2x),(tan x, x,1):}| . The val...

    Text Solution

    |

  10. If the matrix A = [{:(y+a,b,c),(a,y+b,c),(a,b,y+c):}] has rank 3, then

    Text Solution

    |

  11. If the system of linear equations x1 + 2x2 + 3x3 = 6, x1 + 3x2 + 5x3 =...

    Text Solution

    |

  12. If a ,b ,c are in G.P. with common ratio r1a n dalpha,beta,gamma are i...

    Text Solution

    |

  13. Let A=[a(ij)](3xx3) be such that a(ij)=[{:(3, " when",hati=hatj),(0,,h...

    Text Solution

    |

  14. Let lambda "and" alpha be real. Let S denote the set of all values of ...

    Text Solution

    |

  15. Prove that the value of each the following determinants is zero: |s...

    Text Solution

    |

  16. For what value of p, is the system of equation p^3x+(p+1)^3y=(p+2)^3 a...

    Text Solution

    |

  17. If the sides of a DeltaABC and a, b, c and |{:(a^(2),b^(2),c^(2)),((a+...

    Text Solution

    |

  18. Supposealpha ,beta , gamma in R are such that sin alpha, sin beta , s...

    Text Solution

    |

  19. If Delta(x)=|[sin2x, e^x sinx+x cosx, sinx+x^2 cosx] , [cosx+sinx, e^x...

    Text Solution

    |

  20. Given that matrix A[(x,3,2),(1,y,4),(2,2,z)]. If xyz=60 and 8x+4y+3z=2...

    Text Solution

    |