Home
Class 12
MATHS
Supposealpha ,beta , gamma in R are suc...

Suppose`alpha ,beta , gamma in ` R are such that sin `alpha, sin beta , sin gamma ne 0`
and `Delta = |{:(sin^(2) alpha , sin alpha cos alpha , cos^(2) alpha),(sin^(2) beta , sin beta cos beta , cos^(2) beta),(sin^(2) gamma , sin gamma cos gamma , cos^(2) gamma):}|` then `Delta` cannot exceed

A

1

B

0

C

`-(1)/(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \( \Delta \) given by: \[ \Delta = \begin{vmatrix} \sin^2 \alpha & \sin \alpha \cos \alpha & \cos^2 \alpha \\ \sin^2 \beta & \sin \beta \cos \beta & \cos^2 \beta \\ \sin^2 \gamma & \sin \gamma \cos \gamma & \cos^2 \gamma \end{vmatrix} \] ### Step 1: Simplifying the Determinant We can simplify the determinant by manipulating the columns. Notice that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] So, we can replace the first column with the sum of the first and third columns: \[ \text{Column 1} = \text{Column 1} + \text{Column 3} \] This gives us: \[ \Delta = \begin{vmatrix} 1 & \sin \alpha \cos \alpha & 1 \\ 1 & \sin \beta \cos \beta & 1 \\ 1 & \sin \gamma \cos \gamma & 1 \end{vmatrix} \] ### Step 2: Factor out common terms Next, we can factor out a 2 from the second column and a 2 from the third column: \[ \Delta = \frac{1}{2} \begin{vmatrix} 1 & 2 \sin \alpha \cos \alpha & 2 \cos^2 \alpha \\ 1 & 2 \sin \beta \cos \beta & 2 \cos^2 \beta \\ 1 & 2 \sin \gamma \cos \gamma & 2 \cos^2 \gamma \end{vmatrix} \] ### Step 3: Further Simplification Now we can express \( 2 \sin \theta \cos \theta \) as \( \sin(2\theta) \) and \( 2 \cos^2 \theta - 1 \) as \( \cos(2\theta) \): \[ \Delta = \frac{1}{4} \begin{vmatrix} 1 & \sin(2\alpha) & \cos(2\alpha) \\ 1 & \sin(2\beta) & \cos(2\beta) \\ 1 & \sin(2\gamma) & \cos(2\gamma) \end{vmatrix} \] ### Step 4: Evaluating the Determinant Now, we can evaluate the determinant using the properties of sine and cosine: \[ \Delta = \frac{1}{4} \left( \sin(2\beta) \cos(2\gamma) - \sin(2\gamma) \cos(2\beta) + \sin(2\alpha) \cos(2\gamma) - \sin(2\gamma) \cos(2\alpha) + \sin(2\alpha) \cos(2\beta) - \sin(2\beta) \cos(2\alpha) \right) \] ### Step 5: Using Sine Difference Identity This can be simplified further using the sine difference identity: \[ \Delta = \frac{1}{4} \left( \sin(2\beta - 2\gamma) + \sin(2\alpha - 2\gamma) + \sin(2\alpha - 2\beta) \right) \] ### Step 6: Finding the Maximum Value Since the sine function has a maximum value of 1, we can conclude: \[ \Delta \leq \frac{3}{4} \] Thus, the maximum value of \( \Delta \) cannot exceed 1. ### Conclusion Therefore, we conclude that \( \Delta \) cannot exceed 1.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    DISHA PUBLICATION|Exercise EXERCISE -1 CONCEPT BUILDER|65 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos
  • DIFFERENTIAL EQUATIONS

    DISHA PUBLICATION|Exercise Exercise-2 : Concept Applicator|30 Videos

Similar Questions

Explore conceptually related problems

sin alpha, cos alpha, cos (alpha + delta) sin beta, cos beta, cos (beta + delta) sin gamma, cos gamma, cos (gamma + delta)] | = 0

If cos alpha + cos beta + cos gamma = 3 then sin alpha + sin beta + sin gamma =

If Delta = det [[sin alpha, cos alpha, sin alpha + cos alphasin beta, cos alpha, sin beta + cos betasin gamma, cos alpha, sin gamma + cos beta]] then Delta

If Delta=|(sin alpha, cos alpha, sin alpha+cos beta),(sin beta, cos alpha, sin beta+cos beta),(sin gamma, cos alpha, sin gamma+cos beta)| then Delta equals

Prove that det [[sin alpha, cos alpha, sin (alpha + delta) sin beta, cos beta, sin (beta + delta) sin gamma, cos gamma, sin (gamma + delta)]] = 0

If cos alpha + cos beta+ cos gamma = 0 = sin alpha + sin beta+sin gamma show that sin^(2)alpha + sin^(2) beta + sin^(2) gamma =cos^(2)alpha +cos^(2) beta + cos^(2) gamma =3/2

Let alpha, beta, gamma be the measures of angle such that sin alpha+sin beta+sin gamma ge 2 . Then the possible value of cos alpha + cos beta+cos gamma is

If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma then cos ^ (2) alpha + cos ^ (2) beta + cos ^ (2) gamma is

The value of the determinant Delta = |(sin 2 alpha,sin (alpha + beta),sin (alpha + gamma)),(sin (beta + gamma),sin 2 beta,sin (gamma + beta)),((sin gamma + alpha),sin (gamma + beta),sin 2 gamma)| , is

If alpha + beta- gamma= pi , prove that sin^(2)alpha + sin^(2)beta - sin^(2)gamma = 2sin alpha sin beta cos gamma .

DISHA PUBLICATION-DETERMINANTS-EXERCISE -2 CONCEPT APPLICATOR
  1. If |{:(x^(n),x^(x+2),x^(2n)),(1,x^(a),a),(x^(n+5),x^(a+6),x^(2n+5)):}|...

    Text Solution

    |

  2. The value of the determinant |{:(1^(2),2^(2),3^(2),4^(2)),(2^(2),3^(2)...

    Text Solution

    |

  3. The value of the determinant |{:(1 ,(5^(2x)-5^(-2x))^(2),(5^(2x)-5^(-2...

    Text Solution

    |

  4. If a^(2)+b^(2)+c^(2)=-2 and |{:(1+a^(2)x,(1+b^(2))x,(1+c^(2))x),((...

    Text Solution

    |

  5. If A1B1C1 , A2B2C2 and A3B3C3 are three digit numbers, each of which ...

    Text Solution

    |

  6. If Sr = alpha^r + beta^r + gamma^r then show that |[S0,S1,S2],[S1,S2,S...

    Text Solution

    |

  7. If f(x) = |{:(cos^(2)x, cosx.sinx, -sin x),(cos x sinx ,sin^(2)x ,cos ...

    Text Solution

    |

  8. the value of the determinant |{:((a(1)-b(1))^(2),,(a(1)-b(2))^(2),,...

    Text Solution

    |

  9. f'(x) = |{:(cos x , x , 1),(2sin x,x^(2),2x),(tan x, x,1):}| . The val...

    Text Solution

    |

  10. If the matrix A = [{:(y+a,b,c),(a,y+b,c),(a,b,y+c):}] has rank 3, then

    Text Solution

    |

  11. If the system of linear equations x1 + 2x2 + 3x3 = 6, x1 + 3x2 + 5x3 =...

    Text Solution

    |

  12. If a ,b ,c are in G.P. with common ratio r1a n dalpha,beta,gamma are i...

    Text Solution

    |

  13. Let A=[a(ij)](3xx3) be such that a(ij)=[{:(3, " when",hati=hatj),(0,,h...

    Text Solution

    |

  14. Let lambda "and" alpha be real. Let S denote the set of all values of ...

    Text Solution

    |

  15. Prove that the value of each the following determinants is zero: |s...

    Text Solution

    |

  16. For what value of p, is the system of equation p^3x+(p+1)^3y=(p+2)^3 a...

    Text Solution

    |

  17. If the sides of a DeltaABC and a, b, c and |{:(a^(2),b^(2),c^(2)),((a+...

    Text Solution

    |

  18. Supposealpha ,beta , gamma in R are such that sin alpha, sin beta , s...

    Text Solution

    |

  19. If Delta(x)=|[sin2x, e^x sinx+x cosx, sinx+x^2 cosx] , [cosx+sinx, e^x...

    Text Solution

    |

  20. Given that matrix A[(x,3,2),(1,y,4),(2,2,z)]. If xyz=60 and 8x+4y+3z=2...

    Text Solution

    |