Home
Class 12
PHYSICS
If particle of charge 10^(-12) coulomb m...

If particle of charge `10^(-12)` coulomb moving along the `hatx` - direction with a velocity `10^(5)m//s` experiences a force of `10^(-10)` newton in `haty` - direction due to magnetic field, then the minimum magnetic field is

A

`6.25 xx10^3` Tesla in `hat z` - direction

B

`10^(-15)` Tesla in `hat z ` - direction

C

`6.25 xx10^(-3)` Tesla in `hat z` - direction

D

`10^(-3)` Tesla in `hat z ` - direction

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the formula for the magnetic force acting on a charged particle moving in a magnetic field. The force \( F \) on a charged particle is given by the equation: \[ F = q \cdot v \cdot B \cdot \sin(\theta) \] Where: - \( F \) is the magnetic force (in newtons), - \( q \) is the charge of the particle (in coulombs), - \( v \) is the velocity of the particle (in meters per second), - \( B \) is the magnetic field strength (in tesla), - \( \theta \) is the angle between the velocity vector and the magnetic field vector. ### Step 1: Identify the known values From the problem, we have: - Charge \( q = 10^{-12} \) C - Velocity \( v = 10^{5} \) m/s - Force \( F = 10^{-10} \) N - The particle is moving in the \( \hat{x} \) direction, and the force is in the \( \hat{y} \) direction. ### Step 2: Determine the angle \( \theta \) Since the particle is moving in the \( \hat{x} \) direction and the force is in the \( \hat{y} \) direction, the angle \( \theta \) between the velocity and the magnetic field must be \( 90^\circ \). Therefore, \( \sin(\theta) = \sin(90^\circ) = 1 \). ### Step 3: Substitute the known values into the formula Now we can simplify the force equation: \[ F = q \cdot v \cdot B \cdot \sin(90^\circ) \] This simplifies to: \[ F = q \cdot v \cdot B \] ### Step 4: Solve for the magnetic field \( B \) Rearranging the equation to solve for \( B \): \[ B = \frac{F}{q \cdot v} \] ### Step 5: Substitute the values into the equation Substituting the known values: \[ B = \frac{10^{-10}}{(10^{-12}) \cdot (10^{5})} \] ### Step 6: Calculate the magnetic field Calculating the denominator: \[ (10^{-12}) \cdot (10^{5}) = 10^{-7} \] Now substituting this back into the equation for \( B \): \[ B = \frac{10^{-10}}{10^{-7}} = 10^{-10 + 7} = 10^{-3} \text{ T} \] ### Final Answer Thus, the minimum magnetic field \( B \) is: \[ B = 10^{-3} \text{ T} \text{ or } 1 \text{ mT} \]

To solve the problem step by step, we will use the formula for the magnetic force acting on a charged particle moving in a magnetic field. The force \( F \) on a charged particle is given by the equation: \[ F = q \cdot v \cdot B \cdot \sin(\theta) \] Where: - \( F \) is the magnetic force (in newtons), ...
Promotional Banner

Topper's Solved these Questions

  • MOVING CHARGES AND MAGNETISM

    DISHA PUBLICATION|Exercise EXERCISE - 1 : Concept Builder (Topic wise) (Topic 2 : Magnetic Field Lines, Biot - Savart.s Law and Ampere.s Circuital Law|21 Videos
  • MOVING CHARGES AND MAGNETISM

    DISHA PUBLICATION|Exercise EXERCISE - 1 : Concept Builder (Topic wise) (Topic 3 : Force and torque on current carrying conductor and moving coil Galvanometor )|14 Videos
  • MOVING CHARGES AND MAGNETISM

    DISHA PUBLICATION|Exercise EXERCISE - 2 : Concept Applicator|25 Videos
  • MOTION IN A STRAIGHT LINE

    DISHA PUBLICATION|Exercise Exercise-2|30 Videos
  • NUCLEI

    DISHA PUBLICATION|Exercise EXERCISE - 2 (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

If a particle of charge 10^(-12) coulomb moving along the hat(x) -direction with a velocity 10^(5)m//s experiences a force of 10^(-10) newton in hat(y) -direction due to magnetic field. Then the minimum magnetic field is

A particle having charge q = 10 muC is moving with a velocity of V=10^(6)m//s in a direction making an angle of 45° with positive x axis in the xy plane (see figure). It expe- riences a magnetic force along negative z direction. When the same particle is projected with a velocity v' = 10^(6) m//s in positive z direction, it experiences a magnetic force of 10 mN along X direction. Find the direction and magnitude of the magnetic field in the region.

A charged particle carrying charge q=1muc moves in uniform magnetic with velocity v_1=10^6m//s at angle 45^@ with x -axis in the xy -plane and experiences a force F_1=5sqrt2mN along the negative z -axis. When te same particle moves with velocity v_2=10^6m//s along the z -axis it experiences a force F_2 in y -direction. Find a. the magnitude and direction of the magnetic field b. the magnetic of the force F_2 .

An electron beam projected along + X-axis, experience a force due to a magnetic field along the + Y-axis. What is the direction of the magnetic field?

A particle of charge 16xx10^(-18) coulomb moving with velocity 10m//s along the x- axis enters a region where a magnetic field of induction B is along the y- axis, and an electric field of magnitude 10^1//m^(-1) is along the negative Z- axis. If the charged particle continues moving along the X- axis, the magnitude to B is

An electron is moving along +x direction with a velocity of 6 xx 10^6 ms^(-1) . It enters a region of uniform electric field of 300 V/cm pointing along + y direction. The magnitude and direction of the magnetic field set up in this region such that the electron keeps moving along the x direction will be :

A particle with 10^(-11) coulomb of charge and 10^(-7)kg mass is moving wilth a velocity of 10^(8)m//s along the y -axis. A uniform static magnetic field B=0.5 Tesla is acting along the x -direction. The force on the particle is

DISHA PUBLICATION-MOVING CHARGES AND MAGNETISM -EXERCISE - 1 : Concept Builder (Topic wise) (Topic 1 : Motion of Charged Particle in Magnetic Field )
  1. The magnetic force action on a charged particle of charge -2muC in a m...

    Text Solution

    |

  2. A charged paricle goes undeflected in a region containing electric an...

    Text Solution

    |

  3. An electron having a charge c moves with a velocity v in X - direction...

    Text Solution

    |

  4. A thin circular wire carrying a current I has a magnetic moment M. The...

    Text Solution

    |

  5. You are given a closed circuit with radii a and b as shown in fig carr...

    Text Solution

    |

  6. An electron moves in a circular orbit with a uniform speed v.It produc...

    Text Solution

    |

  7. A proton moving with a velocity 3xx10^(5)m//s enters a magnetic field ...

    Text Solution

    |

  8. A beam of electrons is moving with constant velocity in a region havin...

    Text Solution

    |

  9. A uniform magnetic field at right angles to the direction of motion of...

    Text Solution

    |

  10. A proton moving with a constant velocity passes through a region of sp...

    Text Solution

    |

  11. A charge particle (charge q ) is moving in a circle of radius R with u...

    Text Solution

    |

  12. A charge particle moves with velocity vecV=Ahati+Dhatj magnetic field ...

    Text Solution

    |

  13. If particle of charge 10^(-12) coulomb moving along the hatx - directi...

    Text Solution

    |

  14. A certain region has an electric field vecE = (2hati-3hatj) N/C and a...

    Text Solution

    |

  15. A cathode ray beam is bent in a circle of radius 2 cm by a magnetic in...

    Text Solution

    |

  16. An electron moving with kinetic energy 6xx10^(-16) joules enters a fie...

    Text Solution

    |

  17. A wire of length L metre , carrying a current I ampere is bent in the...

    Text Solution

    |

  18. What is cyclotron frequency of an electron with an energy of 100 eV in...

    Text Solution

    |

  19. A charged particle with a velocity 2xx10^(3) ms^(-1) passes undeflecte...

    Text Solution

    |

  20. A proton and an alpha-particle enter a uniform magnetic field moving w...

    Text Solution

    |