Home
Class 12
PHYSICS
A certain region has an electric field ...

A certain region has an electric field `vecE = (2hati-3hatj)` N/C and a uniform magnetic field `B = (5 hati+3hatj+4k)` . The force experience by a charge IC moving with velocity `(i+2hatj)`

A

`(10 hati-7hatj-7hatk)`

B

`(10 hati+ 7hatj+7hatk)`

C

`(-10 hati+7hatj+7hatk)`

D

`(10 hati+7hatj-7hatk)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the force experienced by a charge moving in an electric and magnetic field, we will use the Lorentz force equation: \[ \vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) \] Where: - \(\vec{F}\) is the total force on the charge, - \(q\) is the charge, - \(\vec{E}\) is the electric field, - \(\vec{v}\) is the velocity of the charge, - \(\vec{B}\) is the magnetic field. Given: - \(\vec{E} = 2\hat{i} - 3\hat{j}\) N/C, - \(\vec{B} = 5\hat{i} + 3\hat{j} + 4\hat{k}\) T, - \(\vec{v} = \hat{i} + 2\hat{j}\) m/s, - \(q = 1\) C. ### Step 1: Calculate the cross product \(\vec{v} \times \vec{B}\) To find \(\vec{v} \times \vec{B}\), we set up the determinant: \[ \vec{v} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 0 \\ 5 & 3 & 4 \end{vmatrix} \] Calculating this determinant: \[ \vec{v} \times \vec{B} = \hat{i} \begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 0 \\ 5 & 4 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2 \\ 5 & 3 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix} = (2)(4) - (0)(3) = 8\) 2. \(\begin{vmatrix} 1 & 0 \\ 5 & 4 \end{vmatrix} = (1)(4) - (0)(5) = 4\) 3. \(\begin{vmatrix} 1 & 2 \\ 5 & 3 \end{vmatrix} = (1)(3) - (2)(5) = 3 - 10 = -7\) Now substituting back: \[ \vec{v} \times \vec{B} = 8\hat{i} - 4\hat{j} - 7\hat{k} \] ### Step 2: Calculate the total force \(\vec{F}\) Now we substitute \(\vec{E}\) and \(\vec{v} \times \vec{B}\) into the Lorentz force equation: \[ \vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) \] Substituting \(q = 1\): \[ \vec{F} = 1 \left( (2\hat{i} - 3\hat{j}) + (8\hat{i} - 4\hat{j} - 7\hat{k}) \right) \] Combine the vectors: \[ \vec{F} = (2 + 8)\hat{i} + (-3 - 4)\hat{j} - 7\hat{k} \] \[ \vec{F} = 10\hat{i} - 7\hat{j} - 7\hat{k} \] ### Final Result The force experienced by the charge is: \[ \vec{F} = 10\hat{i} - 7\hat{j} - 7\hat{k} \text{ N} \]

To solve the problem of finding the force experienced by a charge moving in an electric and magnetic field, we will use the Lorentz force equation: \[ \vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) \] Where: - \(\vec{F}\) is the total force on the charge, ...
Promotional Banner

Topper's Solved these Questions

  • MOVING CHARGES AND MAGNETISM

    DISHA PUBLICATION|Exercise EXERCISE - 1 : Concept Builder (Topic wise) (Topic 2 : Magnetic Field Lines, Biot - Savart.s Law and Ampere.s Circuital Law|21 Videos
  • MOVING CHARGES AND MAGNETISM

    DISHA PUBLICATION|Exercise EXERCISE - 1 : Concept Builder (Topic wise) (Topic 3 : Force and torque on current carrying conductor and moving coil Galvanometor )|14 Videos
  • MOVING CHARGES AND MAGNETISM

    DISHA PUBLICATION|Exercise EXERCISE - 2 : Concept Applicator|25 Videos
  • MOTION IN A STRAIGHT LINE

    DISHA PUBLICATION|Exercise Exercise-2|30 Videos
  • NUCLEI

    DISHA PUBLICATION|Exercise EXERCISE - 2 (CONCEPT APPLICATOR)|30 Videos

Similar Questions

Explore conceptually related problems

A charged particle moves in a uniform magnetic field B=(2hati-3hatj) T

A charge q=4muC has as instantaneous velociyt v=(2hati-3hatj+hatk)xx10^6m/s in a uniform magnetic field B=(2hati+5hatj-3hatk)xx10^-2T . What is the force on the charge?

A charged particle has acceleration veca=2hati=xhatj in a magnetic field vecB=-3hati+2hatj-4hatk .Find the value of x .

1micro C charge moves with the velocity vecv=4hati+6hatj+3hatk in uniform magnetic field, vecB= 3hati+4hatj-3hatk xx 10^(-3). Force experience by charged particle in units of 10^(-9) N will be,

An electron moving with velocity vecv_(1)=1hati m//s at a point in a magnetic field experiences a force vecF_(1)=-ehatjN where e is the charge of electron.If the electron is moving with a velocity vecv_(2)=hati-hatj m//s at the same point, it experiences a force vecF_(2)=-e(hati+hatj)N . Find the magnetic field and the force the electron would experience if it were moving with a velocity vecv_(3)=vecv_(1)xxvecv_(2) at the same point.

A charge q moves with a velocity 2m//s along x- axis in a unifrom magnetic field B=(hati+2hatj+3hatk) tesla.

Find the V_(ab) in an electric field E=(2hati+3hatj+4hatk)N/C , where r_a=(hati-2hatj+hatk)m and r_b=(2hati+hatj-2hatk)m

DISHA PUBLICATION-MOVING CHARGES AND MAGNETISM -EXERCISE - 1 : Concept Builder (Topic wise) (Topic 1 : Motion of Charged Particle in Magnetic Field )
  1. The magnetic force action on a charged particle of charge -2muC in a m...

    Text Solution

    |

  2. A charged paricle goes undeflected in a region containing electric an...

    Text Solution

    |

  3. An electron having a charge c moves with a velocity v in X - direction...

    Text Solution

    |

  4. A thin circular wire carrying a current I has a magnetic moment M. The...

    Text Solution

    |

  5. You are given a closed circuit with radii a and b as shown in fig carr...

    Text Solution

    |

  6. An electron moves in a circular orbit with a uniform speed v.It produc...

    Text Solution

    |

  7. A proton moving with a velocity 3xx10^(5)m//s enters a magnetic field ...

    Text Solution

    |

  8. A beam of electrons is moving with constant velocity in a region havin...

    Text Solution

    |

  9. A uniform magnetic field at right angles to the direction of motion of...

    Text Solution

    |

  10. A proton moving with a constant velocity passes through a region of sp...

    Text Solution

    |

  11. A charge particle (charge q ) is moving in a circle of radius R with u...

    Text Solution

    |

  12. A charge particle moves with velocity vecV=Ahati+Dhatj magnetic field ...

    Text Solution

    |

  13. If particle of charge 10^(-12) coulomb moving along the hatx - directi...

    Text Solution

    |

  14. A certain region has an electric field vecE = (2hati-3hatj) N/C and a...

    Text Solution

    |

  15. A cathode ray beam is bent in a circle of radius 2 cm by a magnetic in...

    Text Solution

    |

  16. An electron moving with kinetic energy 6xx10^(-16) joules enters a fie...

    Text Solution

    |

  17. A wire of length L metre , carrying a current I ampere is bent in the...

    Text Solution

    |

  18. What is cyclotron frequency of an electron with an energy of 100 eV in...

    Text Solution

    |

  19. A charged particle with a velocity 2xx10^(3) ms^(-1) passes undeflecte...

    Text Solution

    |

  20. A proton and an alpha-particle enter a uniform magnetic field moving w...

    Text Solution

    |