Home
Class 12
MATHS
The distance, from the origin, of the no...

The distance, from the origin, of the normal to the curve, `x = 2 cos t + 2t sin t, y = 2 sin t - 2t "cos t at t" = (pi)/(4)`, is :

A

2

B

4

C

`sqrt(2)`

D

`2 sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the distance from the origin to the normal to the curve defined by the parametric equations \( x = 2 \cos t + 2t \sin t \) and \( y = 2 \sin t - 2t \cos t \) at \( t = \frac{\pi}{4} \), we will follow these steps: ### Step 1: Calculate the coordinates of the point on the curve at \( t = \frac{\pi}{4} \). Substituting \( t = \frac{\pi}{4} \) into the equations for \( x \) and \( y \): \[ x = 2 \cos\left(\frac{\pi}{4}\right) + 2\left(\frac{\pi}{4}\right) \sin\left(\frac{\pi}{4}\right) = 2 \cdot \frac{1}{\sqrt{2}} + 2 \cdot \frac{\pi}{4} \cdot \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} + \frac{\pi}{2\sqrt{2}} = \sqrt{2} + \frac{\pi}{2\sqrt{2}} = \frac{2 + \pi}{2\sqrt{2}} \] \[ y = 2 \sin\left(\frac{\pi}{4}\right) - 2\left(\frac{\pi}{4}\right) \cos\left(\frac{\pi}{4}\right) = 2 \cdot \frac{1}{\sqrt{2}} - 2 \cdot \frac{\pi}{4} \cdot \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} - \frac{\pi}{2\sqrt{2}} = \sqrt{2} - \frac{\pi}{2\sqrt{2}} = \frac{2 - \pi}{2\sqrt{2}} \] Thus, the point on the curve at \( t = \frac{\pi}{4} \) is: \[ \left( \frac{2 + \pi}{2\sqrt{2}}, \frac{2 - \pi}{2\sqrt{2}} \right) \] ### Step 2: Calculate the derivatives \( \frac{dx}{dt} \) and \( \frac{dy}{dt} \). \[ \frac{dx}{dt} = -2 \sin t + 2t \cos t \] \[ \frac{dy}{dt} = 2 \cos t - 2t \sin t \] At \( t = \frac{\pi}{4} \): \[ \frac{dx}{dt} = -2 \cdot \frac{1}{\sqrt{2}} + 2 \cdot \frac{\pi}{4} \cdot \frac{1}{\sqrt{2}} = -\frac{2}{\sqrt{2}} + \frac{\pi}{2\sqrt{2}} = \frac{-2 + \pi}{2\sqrt{2}} \] \[ \frac{dy}{dt} = 2 \cdot \frac{1}{\sqrt{2}} - 2 \cdot \frac{\pi}{4} \cdot \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} - \frac{\pi}{2\sqrt{2}} = \frac{2 - \pi}{2\sqrt{2}} \] ### Step 3: Find the slope of the normal. The slope of the tangent is given by \( \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \). The slope of the normal is the negative reciprocal of the slope of the tangent: \[ \text{slope of normal} = -\frac{\frac{dx}{dt}}{\frac{dy}{dt}} = -\frac{-\frac{2 - \pi}{2\sqrt{2}}}{\frac{-2 + \pi}{2\sqrt{2}}} = \frac{2 - \pi}{2 - \pi} = 1 \] ### Step 4: Write the equation of the normal line. Using the point-slope form of the line equation: \[ y - y_1 = m(x - x_1) \] Substituting \( m = 1 \), \( (x_1, y_1) = \left( \frac{2 + \pi}{2\sqrt{2}}, \frac{2 - \pi}{2\sqrt{2}} \right) \): \[ y - \frac{2 - \pi}{2\sqrt{2}} = 1 \left( x - \frac{2 + \pi}{2\sqrt{2}} \right) \] Rearranging gives: \[ y = x + \frac{2 - \pi}{2\sqrt{2}} - \frac{2 + \pi}{2\sqrt{2}} = x - \frac{2 + \pi - 2 + \pi}{2\sqrt{2}} = x - \frac{2\pi}{2\sqrt{2}} = x - \frac{\pi}{\sqrt{2}} \] ### Step 5: Find the distance from the origin to the normal line. The equation of the normal line is: \[ y = x - \frac{\pi}{\sqrt{2}} \] This can be rearranged to the standard form \( Ax + By + C = 0 \): \[ x - y - \frac{\pi}{\sqrt{2}} = 0 \] Here, \( A = 1, B = -1, C = -\frac{\pi}{\sqrt{2}} \). The distance \( d \) from the origin \( (0, 0) \) to the line \( Ax + By + C = 0 \) is given by: \[ d = \frac{|C|}{\sqrt{A^2 + B^2}} = \frac{\left| -\frac{\pi}{\sqrt{2}} \right|}{\sqrt{1^2 + (-1)^2}} = \frac{\frac{\pi}{\sqrt{2}}}{\sqrt{2}} = \frac{\pi}{2} \] ### Final Answer: The distance from the origin to the normal to the curve at \( t = \frac{\pi}{4} \) is: \[ \frac{\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    DISHA PUBLICATION|Exercise EXERCISE - 1|65 Videos
  • APPLICATION OF DERIVATIVES

    DISHA PUBLICATION|Exercise EXERCISE - 2|30 Videos
  • APPLICATION OF INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2: CONCEPT BUILDER|30 Videos

Similar Questions

Explore conceptually related problems

The distance from the origin of the normal to the curve x=2cos t+2tsint , y=2sint-2tcost , at t=(pi)/4 is

x = a (cos t + sin t), y = a (sin t-cos t)

If x = a (cos t + t sin t), y = a (sin t - t cos t), then at t = pi//4,(dy)/(dx)

x=a(cos t + log tan t/2), y =a sin t

Find the equations of the tangent and normal to the curve x = a sin 3t, y = cos 2 t " at " t = (pi)/(4)

x = "sin" t, y = "cos" 2t

If x=a(cos t+t sin t) and y=a(sin t-t cos t)

x=2 cos^2 t, y= 6 sin ^2 t

DISHA PUBLICATION-APPLICATION OF DERIVATIVES -EXERCISE - 2
  1. The distance, from the origin, of the normal to the curve, x = 2 cos t...

    Text Solution

    |

  2. Find the distance of the point on y=x^4+3x^2+2x which is nearest to th...

    Text Solution

    |

  3. If the tangents at any point on the curve x^4 + y^4 = a^4 cuts off in...

    Text Solution

    |

  4. f(x)=(x)/(sinx ) and g(x)=(x)/(tanx) , where 0 lt x le 1 then in the...

    Text Solution

    |

  5. If the tangent at any point (4m^2,8m^2) of x^3-y^2=0 is a normal to th...

    Text Solution

    |

  6. The point P of the curve y^(2)=2x^(3) such that the tangent at P is p...

    Text Solution

    |

  7. Find the number of solutions of the equation 3tanx+x^3=2in(0,pi/4)

    Text Solution

    |

  8. For the curve by^2=(x+a)^3 the square of subtangent is proportional t...

    Text Solution

    |

  9. Find the point of intersection of the tangents drawn to the curve x...

    Text Solution

    |

  10. The function f(x)""=""t a n^(-1)(sinx""+""cosx) is an increasing fu...

    Text Solution

    |

  11. The function f(x)=2log(x-2)-x^2+4x+1 increases on the interval (a) (1,...

    Text Solution

    |

  12. Find the intervals in which the function f given by f(x)=(4sinx-2x-xc...

    Text Solution

    |

  13. Let f(x)=x^3+ax^2+bx+5sin^2x be an increasing function in the set of r...

    Text Solution

    |

  14. The function f(x) = 3 cos^(4)x + 10 cos^(3) x + 6 cos^(2)x - 3, (0 le ...

    Text Solution

    |

  15. f(x) = 2x^(2) – log | x | (x != 0) is monotonic increasing in the int...

    Text Solution

    |

  16. The minimum value of e^((2x^(2)-2x+1)sin^(2)x) is

    Text Solution

    |

  17. The number of solutions of the equation x^3 +2 x^2 +5 x + 2 cos x = 0 ...

    Text Solution

    |

  18. Let g(x)=2f(x/2)+f(1-x) and f^(primeprime)(x)<0 in 0<=x<=1 then g(x)

    Text Solution

    |

  19. If f(x)=x+sinx ,g(x)=e^(-x),u=sqrt(c+1)-sqrt(c) v=sqrt(c) -sqrt(c-1),(...

    Text Solution

    |

  20. f(x)=(sin^(2)x)e^(-2sin^(2)x)*max f(x)-min f(x)=

    Text Solution

    |

  21. Given P(x)""=""x^4+""a x^3+""c x""+""d such that x""=""0 is the only ...

    Text Solution

    |