Home
Class 12
MATHS
If [veca xx vecb vecb xx vec c vec c xx...

If ` [veca xx vecb vecb xx vec c vec c xx vec a] = lamda [veca vecb vec c ]^2` then `lamda` is equal to

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation involving the scalar triple product (also known as the box product) and the vector cross products. The equation we have is: \[ [\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b})] = \lambda [\vec{a}, \vec{b}, \vec{c}]^2 \] Where \([\vec{a}, \vec{b}, \vec{c}]\) denotes the scalar triple product, which can also be expressed as \(\vec{a} \cdot (\vec{b} \times \vec{c})\). ### Step-by-Step Solution: 1. **Use the Vector Triple Product Identity**: We apply the vector triple product identity: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] Using this identity, we can rewrite each term in the left-hand side of the equation. 2. **Calculate Each Term**: - For \(\vec{a} \times (\vec{b} \times \vec{c})\): \[ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] - For \(\vec{b} \times (\vec{c} \times \vec{a})\): \[ \vec{b} \times (\vec{c} \times \vec{a}) = (\vec{b} \cdot \vec{a}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{a} \] - For \(\vec{c} \times (\vec{a} \times \vec{b})\): \[ \vec{c} \times (\vec{a} \times \vec{b}) = (\vec{c} \cdot \vec{b}) \vec{a} - (\vec{c} \cdot \vec{a}) \vec{b} \] 3. **Combine the Terms**: Now we combine all these results: \[ [\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b})] \] This results in: \[ [(\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}] + [(\vec{b} \cdot \vec{a}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{a}] + [(\vec{c} \cdot \vec{b}) \vec{a} - (\vec{c} \cdot \vec{a}) \vec{b}] \] Simplifying this, we find that all terms involving \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) will cancel out appropriately. 4. **Final Expression**: After simplification, we find that: \[ [\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b})] = [\vec{a}, \vec{b}, \vec{c}]^2 \] 5. **Equate to Find \(\lambda\)**: From the original equation: \[ \lambda [\vec{a}, \vec{b}, \vec{c}]^2 = [\vec{a}, \vec{b}, \vec{c}]^2 \] We can see that \(\lambda\) must equal 1. ### Conclusion: Thus, we conclude that: \[ \lambda = 1 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -1 : CONCEPT BUILDER|60 Videos
  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • TRIGONOMETRIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE-2|30 Videos

Similar Questions

Explore conceptually related problems

if vec(a) + 2vec(b) + 3vec(c ) = 0 and vec(a) xx vec(b) + vec(b) xx vec(c ) + vec(c ) xx vec(a) = lamda (vec(b) xx vec(c )) then what is the value of lamda ?

If veca = hati +hatj , vecb = 2hatj - hatk " and " vecr xx veca = vecb xx vec a , vecr xx vec b = veca xx vec b , then what is the value of (vec r)/(|vec r|)

Let veca = hati - 2 hatj + 2hatk and vec b = 2 hati - hatj + hatk be two vectors. If vec c is a vector such that vecb xx vec c = vec b xx vec a and vec c vec a = 1 , then vec c vec b is equal to :

if veca xx vecb = vecc.vecb xx vecc = veca , " where " vecc ne vec0 then

if veca xx vecb = vecc.vecb xx vecc = veca , " where " vecc ne vec0 then

Let vec r , vec a , vec b and vec c be four non zero vectors such that vec r.vec a = 0, |vec r xx vecb|=|vecr||vecb| " and " |vec r xx vec c | = |vec r||vec c | . Then [abc] is equal to

Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a) , where veca, vecb, vec c are non-zero and non-coplanar vectors. If vecr is orthogonal to veca+vecb+vec c , then find the minimum value of (4)/(pi^(2))(x^(2)+y^(2)) .

Let veca , vecb, vec c be three non coplanar vectors , and let vecp , vecq " and " vec r be the vectors defined by the relation vecp = (vecb xx vec c )/([veca vecb vec c ]), vec q = (vec c xx vec a)/([veca vecb vec c ]) " and " vec r = (vec a xx vec b)/([veca vecb vec c ]) Then the value of the expension (vec a + vec b) .vec p + (vecb + vec c) .q + (vec c + vec a) . vec r is equal to

DISHA PUBLICATION-VECTOR ALGEBRA-EXERCISE -2 : CONCEPT APPLICATOR
  1. If [veca xx vecb vecb xx vec c vec c xx vec a] = lamda [veca vecb vec...

    Text Solution

    |

  2. The points D, E, F divide BC, CA and AB of the triangle ABC in the ra...

    Text Solution

    |

  3. OABCDE is a regular hexagon of side 2 units in the XY-plane in the ...

    Text Solution

    |

  4. The vectors bara (x) = cos xbar i + sin xbar j ,bar b(x)=xbar i + sin ...

    Text Solution

    |

  5. The position vectors of the point A, B, C and D are 3hati-2hatj -hatk,...

    Text Solution

    |

  6. Let x^2+3y^2=3 be the equation of an ellipse in the x-y plane. Aa n dB...

    Text Solution

    |

  7. Let triangle PQR be a triangle. Let veca = vec(QR) , vecb = vec(RP) a...

    Text Solution

    |

  8. If vec x and vec y are two non-collinear vectors and ABC is a triangle...

    Text Solution

    |

  9. If vec u ,"" vec v , vec w are noncoplanar vectors and p, q are re...

    Text Solution

    |

  10. Lelt two non collinear unit vectors hata and hatb form and acute angle...

    Text Solution

    |

  11. A non-zero vecto veca is such tha its projections along vectors (hati ...

    Text Solution

    |

  12. veca, vecb ,vec c are three vectors with magnitude |veca| = 4, |vecb|...

    Text Solution

    |

  13. If the two adjacent sides of two rectangles are represented by vect...

    Text Solution

    |

  14. OA, OB, OC are the sides of a rectangular parallelopiped whose diagona...

    Text Solution

    |

  15. If the positive numbers a, b and c are the pth, qth and rth terms of G...

    Text Solution

    |

  16. A vector veca=(x,y,z) makes an obtuse angle with F-axis, and make equa...

    Text Solution

    |

  17. Let vecOB = hati + 2hatj + 2hatk " and" vecOA = 4hati + 2hatj + 2hatk ...

    Text Solution

    |

  18. If a1 , a2 and a3 are three numbers satisfying a1^2 + a2^2 +a3^2 = 1 ,...

    Text Solution

    |

  19. Let veca , vecb and vec c be non coplanar unit vectors equally incl...

    Text Solution

    |

  20. Let veca , vecb, vec c be three non coplanar vectors , and let vecp ,...

    Text Solution

    |

  21. Let veca= 2hati+hatj -2hatk and vecb=hati+hatj. If vec c is a vecto...

    Text Solution

    |