Home
Class 12
MATHS
If vecp,vecq and vecr are perpendicular...

If ` vecp,vecq` and `vecr` are perpendicular to `vecq + vecr , vec r + vecp` and `vecp + vecq` respectively and if `|vecp +vecq| = 6, |vecq + vecr| = 4sqrt3` and `|vecr +vecp| = 4` then `|vecp + vecq + vecr|` is

A

`5sqrt2`

B

10

C

15

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Set up the equations based on the perpendicular conditions Given that: 1. \( \vec{p} \) is perpendicular to \( \vec{q} + \vec{r} \) 2. \( \vec{q} \) is perpendicular to \( \vec{p} + \vec{r} \) 3. \( \vec{r} \) is perpendicular to \( \vec{p} + \vec{q} \) From these conditions, we can write the following equations: - From \( \vec{p} \cdot (\vec{q} + \vec{r}) = 0 \): \[ \vec{p} \cdot \vec{q} + \vec{p} \cdot \vec{r} = 0 \quad \text{(Equation 1)} \] - From \( \vec{q} \cdot (\vec{p} + \vec{r}) = 0 \): \[ \vec{q} \cdot \vec{p} + \vec{q} \cdot \vec{r} = 0 \quad \text{(Equation 2)} \] - From \( \vec{r} \cdot (\vec{p} + \vec{q}) = 0 \): \[ \vec{r} \cdot \vec{p} + \vec{r} \cdot \vec{q} = 0 \quad \text{(Equation 3)} \] ### Step 2: Use the given magnitudes We are given: - \( |\vec{p} + \vec{q}| = 6 \) - \( |\vec{q} + \vec{r}| = 4\sqrt{3} \) - \( |\vec{r} + \vec{p}| = 4 \) We can express these magnitudes in terms of dot products: 1. \( |\vec{p} + \vec{q}|^2 = |\vec{p}|^2 + |\vec{q}|^2 + 2\vec{p} \cdot \vec{q} = 36 \) (Equation 4) 2. \( |\vec{q} + \vec{r}|^2 = |\vec{q}|^2 + |\vec{r}|^2 + 2\vec{q} \cdot \vec{r} = 48 \) (Equation 5) 3. \( |\vec{r} + \vec{p}|^2 = |\vec{r}|^2 + |\vec{p}|^2 + 2\vec{r} \cdot \vec{p} = 16 \) (Equation 6) ### Step 3: Solve the equations Now we have a system of equations. Let's denote: - \( a = |\vec{p}|^2 \) - \( b = |\vec{q}|^2 \) - \( c = |\vec{r}|^2 \) From the equations we have: 1. \( a + b + 2\vec{p} \cdot \vec{q} = 36 \) 2. \( b + c + 2\vec{q} \cdot \vec{r} = 48 \) 3. \( c + a + 2\vec{r} \cdot \vec{p} = 16 \) ### Step 4: Substitute and simplify Using Equations 1, 2, and 3, we can express \( \vec{p} \cdot \vec{q} \), \( \vec{q} \cdot \vec{r} \), and \( \vec{r} \cdot \vec{p} \) in terms of \( a \), \( b \), and \( c \): - From Equation 1: \[ \vec{p} \cdot \vec{q} = -\frac{a + b - 36}{2} \] - From Equation 2: \[ \vec{q} \cdot \vec{r} = -\frac{b + c - 48}{2} \] - From Equation 3: \[ \vec{r} \cdot \vec{p} = -\frac{c + a - 16}{2} \] ### Step 5: Add the equations Adding the three equations gives: \[ (a + b + c) + 2\left(-\frac{a + b - 36}{2} - \frac{b + c - 48}{2} - \frac{c + a - 16}{2}\right) = 36 + 48 + 16 \] ### Step 6: Solve for \( |\vec{p} + \vec{q} + \vec{r}| \) Let \( x = |\vec{p} + \vec{q} + \vec{r}| \): \[ x^2 = a + b + c + 2\left(\vec{p} \cdot \vec{q} + \vec{q} \cdot \vec{r} + \vec{r} \cdot \vec{p}\right) \] Substituting the values we derived, we can find \( x^2 \) and thus \( x \). ### Final Answer After calculations, we find: \[ |\vec{p} + \vec{q} + \vec{r}| = 5\sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • TRIGONOMETRIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE-2|30 Videos

Similar Questions

Explore conceptually related problems

Two vectors vecP and vecQ that are perpendicular to each other are :

if vecP +vecQ = vecP -vecQ , then

Find the angle between two vectors vecp and vecq are 4,3 with respectively and when vecp.vecq =5 .

The resultant of vecP and vecQ is perpendicular to vecP . What is the angle between vecP and vecQ

|vecP| = |vecQ| , |vecP +vecQ| = |vecP -vecQ| .Find the angle between P and Q

If vecp, vecq , vecr denote vectors vecbxxvecc, vecc xx vecc xx veca, vecaxx vecb . Respectively, show that veca is parallel to vecq xx vecr , vecb is parallel to vecrxx vecp , vecc is parallel to vecp xx vecq .\

If vecp, vecq , vecr denote vectors vecbxxvecc, vecc xx vecc xx veca, vecaxx vecb . Respectively, show that veca is parallel to vecq xx vecr , vecb is parallel to vecrxx vecp , vecc is parallel to vecp xx vecq .\

If vecP -vecQ - vecR=0 and the magnitudes of vecP, vecQ and vecR are 5 , 4 and 3 units respectively, the angle between vecP and vecR is

If vecpxxvecq=vecr and vecp.vecq=c , then vecq is

if |vecP + vecQ| = |vecP| + |vecQ| , the angle between the vectors vecP and vecQ is

DISHA PUBLICATION-VECTOR ALGEBRA-EXERCISE -1 : CONCEPT BUILDER
  1. Which of the following is an example of two different vectors with sam...

    Text Solution

    |

  2. veca=3hati-5hatj and vecb=6hati+3hatj are two vectors and vec c is a v...

    Text Solution

    |

  3. If vecp,vecq and vecr are perpendicular to vecq + vecr , vec r + vecp...

    Text Solution

    |

  4. If veca =hati + hatj - hatk, vecb = 2hati + 3hatj + hatk and vec c = h...

    Text Solution

    |

  5. If hat(i)+hat(j), hat(j)+hat(k), hat(i)+hat(k) are the position vector...

    Text Solution

    |

  6. If veca and vecb are non colinear vectors, then the value of alpha for...

    Text Solution

    |

  7. If angle between veca = hati - 2hatj + 3hatk and vecb = 2hati + hatj ...

    Text Solution

    |

  8. If veca, vecb,vecc are non-coplanar vectors and lambda is a real numbe...

    Text Solution

    |

  9. Find the unit vector parallel to the resultant vector of 2hati+4hatj-5...

    Text Solution

    |

  10. If the middle points of sides BC, CA and AB of triangle ABC are respec...

    Text Solution

    |

  11. Find the length diagonal AC of a prallelogram ABCD whose two adjacent ...

    Text Solution

    |

  12. If f is the centre of a circle inscribed in a triangle ABC, then |vec...

    Text Solution

    |

  13. Let vec a, vec b and vec c are vectors of magnitude 3,4,5 respectively...

    Text Solution

    |

  14. If veca , vecb , vec c are any three coplanar unit vectors , then :

    Text Solution

    |

  15. The vector veca=alpha hati+2hatj+betahatk lies in the plane of vectors...

    Text Solution

    |

  16. Let vecu= hati+hatj, vecv = hati -hatj and vecw = hati+2hatj+3hatk. I...

    Text Solution

    |

  17. If vectors a=4hat(i)-3hat(j)+6hat(k) and vector b=-2hat(i)+2hat(j)-hat...

    Text Solution

    |

  18. A vector of magnitude 14 lies in the xy-plane and makes an angle of 60...

    Text Solution

    |

  19. If veca,vecb,vec c are unit vectors such that veca+vecb+vec c= vec0 fi...

    Text Solution

    |

  20. The two variable vectors 3xhati+yhatj-3hatk and xhati-4yhatj+4hatk are...

    Text Solution

    |