Home
Class 12
MATHS
If angle between veca = hati - 2hatj + ...

If angle between ` veca = hati - 2hatj + 3hatk` and `vecb = 2hati + hatj +hatk` is `theta` then the value of `sin theta ` is

A

`(3)/(2sqrt7)`

B

`(-2)/(sqrt7)`

C

`(4)/(3sqrt7)`

D

`(5)/(2sqrt7)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin \theta \) where \( \theta \) is the angle between the vectors \( \vec{a} = \hat{i} - 2\hat{j} + 3\hat{k} \) and \( \vec{b} = 2\hat{i} + \hat{j} + \hat{k} \), we can follow these steps: ### Step 1: Calculate the dot product \( \vec{a} \cdot \vec{b} \) The dot product of two vectors \( \vec{a} \) and \( \vec{b} \) is given by: \[ \vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3 \] For our vectors: - \( \vec{a} = (1, -2, 3) \) - \( \vec{b} = (2, 1, 1) \) Calculating the dot product: \[ \vec{a} \cdot \vec{b} = (1)(2) + (-2)(1) + (3)(1) = 2 - 2 + 3 = 3 \] ### Step 2: Calculate the magnitudes of \( \vec{a} \) and \( \vec{b} \) The magnitude of a vector \( \vec{v} = (x, y, z) \) is given by: \[ |\vec{v}| = \sqrt{x^2 + y^2 + z^2} \] Calculating the magnitude of \( \vec{a} \): \[ |\vec{a}| = \sqrt{1^2 + (-2)^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14} \] Calculating the magnitude of \( \vec{b} \): \[ |\vec{b}| = \sqrt{2^2 + 1^2 + 1^2} = \sqrt{4 + 1 + 1} = \sqrt{6} \] ### Step 3: Use the dot product to find \( \cos \theta \) The cosine of the angle \( \theta \) between the two vectors is given by: \[ \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} \] Substituting the values we found: \[ \cos \theta = \frac{3}{\sqrt{14} \cdot \sqrt{6}} = \frac{3}{\sqrt{84}} = \frac{3}{2\sqrt{21}} \] ### Step 4: Use the Pythagorean identity to find \( \sin \theta \) Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \sin^2 \theta = 1 - \cos^2 \theta \] Calculating \( \cos^2 \theta \): \[ \cos^2 \theta = \left(\frac{3}{2\sqrt{21}}\right)^2 = \frac{9}{4 \cdot 21} = \frac{9}{84} = \frac{3}{28} \] Now substituting back into the identity: \[ \sin^2 \theta = 1 - \frac{3}{28} = \frac{28 - 3}{28} = \frac{25}{28} \] Taking the square root to find \( \sin \theta \): \[ \sin \theta = \sqrt{\frac{25}{28}} = \frac{5}{\sqrt{28}} = \frac{5}{2\sqrt{7}} \] ### Final Answer Thus, the value of \( \sin \theta \) is: \[ \sin \theta = \frac{5}{2\sqrt{7}} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • TRIGONOMETRIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE-2|30 Videos

Similar Questions

Explore conceptually related problems

Find vecB xx vecA if vecA = 3hati - 2hatj + 6hatk and vecB = hati - hatj + hatk .

Find vecA xx vecB if vecA = hati - 2hatj + 4hatk and vecB = 2hati - hatj + 2hatk

The angle between the two vectors vecA=hati+2hatj-hatk and vecB=-hati+hatj-2hatk

Given veca = hati-hatj+hatk and vecb = 2hati-4hatj-3hatk , find the magnitude of veca

The angle between the two vectors vecA=hati+2hatj-hatk and vecBi=-hati+hatj-2hatk is

Given : vecA = 2hati - hatj + 2hatk and vecB = -hati - hatj + hatk . The unit vector of vecA - vecB is

If veca = 2hati -3hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

DISHA PUBLICATION-VECTOR ALGEBRA-EXERCISE -1 : CONCEPT BUILDER
  1. If hat(i)+hat(j), hat(j)+hat(k), hat(i)+hat(k) are the position vector...

    Text Solution

    |

  2. If veca and vecb are non colinear vectors, then the value of alpha for...

    Text Solution

    |

  3. If angle between veca = hati - 2hatj + 3hatk and vecb = 2hati + hatj ...

    Text Solution

    |

  4. If veca, vecb,vecc are non-coplanar vectors and lambda is a real numbe...

    Text Solution

    |

  5. Find the unit vector parallel to the resultant vector of 2hati+4hatj-5...

    Text Solution

    |

  6. If the middle points of sides BC, CA and AB of triangle ABC are respec...

    Text Solution

    |

  7. Find the length diagonal AC of a prallelogram ABCD whose two adjacent ...

    Text Solution

    |

  8. If f is the centre of a circle inscribed in a triangle ABC, then |vec...

    Text Solution

    |

  9. Let vec a, vec b and vec c are vectors of magnitude 3,4,5 respectively...

    Text Solution

    |

  10. If veca , vecb , vec c are any three coplanar unit vectors , then :

    Text Solution

    |

  11. The vector veca=alpha hati+2hatj+betahatk lies in the plane of vectors...

    Text Solution

    |

  12. Let vecu= hati+hatj, vecv = hati -hatj and vecw = hati+2hatj+3hatk. I...

    Text Solution

    |

  13. If vectors a=4hat(i)-3hat(j)+6hat(k) and vector b=-2hat(i)+2hat(j)-hat...

    Text Solution

    |

  14. A vector of magnitude 14 lies in the xy-plane and makes an angle of 60...

    Text Solution

    |

  15. If veca,vecb,vec c are unit vectors such that veca+vecb+vec c= vec0 fi...

    Text Solution

    |

  16. The two variable vectors 3xhati+yhatj-3hatk and xhati-4yhatj+4hatk are...

    Text Solution

    |

  17. Angle between the vectors sqrt3(veca xx vec b) " and " vec b - (veca ....

    Text Solution

    |

  18. If the vector veca = (2 ,log3 x ,a ) and vecb = (-3,a log3x,log3x) are...

    Text Solution

    |

  19. If veca , vecb ,vec c are the 3 vectors such that |veca| = 3, |vecb| ...

    Text Solution

    |

  20. The vectors (2hati - mhatj+ 3mk) and {(1 + m) hati -2m hatj + hatk} i...

    Text Solution

    |