Home
Class 12
MATHS
If veca , vecb , vec c are any three co...

If `veca , vecb , vec c ` are any three coplanar unit vectors , then :

A

`veca. (vecb xx vec c ) = 1`

B

`veca . (vec b xx vec c ) = 3`

C

`(veca xx vec b ).vec c = 0`

D

`(vec c xx vec a ).vec b = 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that for any three coplanar unit vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\), the scalar triple product \(\vec{a} \cdot (\vec{b} \times \vec{c}) = 0\). ### Step-by-step Solution: 1. **Understanding Coplanar Vectors**: - Three vectors are said to be coplanar if they lie in the same plane. This means that any vector can be expressed as a linear combination of the other two. 2. **Definition of Scalar Triple Product**: - The scalar triple product of three vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) is given by the expression \(\vec{a} \cdot (\vec{b} \times \vec{c})\). - This scalar triple product can also be interpreted geometrically as the volume of the parallelepiped formed by the three vectors. 3. **Volume of Parallelepiped**: - If the vectors are coplanar, the volume of the parallelepiped they form is zero because they do not span a three-dimensional space. Thus, the scalar triple product must also be zero. 4. **Calculating \(\vec{b} \times \vec{c}\)**: - The vector \(\vec{b} \times \vec{c}\) is perpendicular to the plane formed by \(\vec{b}\) and \(\vec{c}\). Therefore, it will be orthogonal to any vector lying in that plane, including \(\vec{a}\). 5. **Dot Product with \(\vec{a}\)**: - The dot product \(\vec{a} \cdot (\vec{b} \times \vec{c})\) involves the cosine of the angle between \(\vec{a}\) and \(\vec{b} \times \vec{c}\). Since \(\vec{b} \times \vec{c}\) is perpendicular to the plane containing \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\), the angle between \(\vec{a}\) and \(\vec{b} \times \vec{c}\) is \(90^\circ\). 6. **Conclusion**: - The cosine of \(90^\circ\) is \(0\), thus \(\vec{a} \cdot (\vec{b} \times \vec{c}) = |\vec{a}| |\vec{b} \times \vec{c}| \cos(90^\circ) = 0\). Therefore, we conclude that: \[ \vec{a} \cdot (\vec{b} \times \vec{c}) = 0 \] ### Final Result: For any three coplanar unit vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\), the scalar triple product is: \[ \vec{a} \cdot (\vec{b} \times \vec{c}) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • TRIGONOMETRIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE-2|30 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb, vec c are three non coplanar vectors , then the value of (vec a.(vec b xx vec c) )/((vec c xx vec a).vec b) + ( vecb.(vec a xx vec c ))/(vec c.(vec a xx vec b)) is

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca+vecb ,vecc are any three non- coplanar vectors then the equation [vecbxxvecc veccxxveca vecaxxvecb]x^(2) + [veca+vecbvecb+veccvecc+veca] x+1 +[vecb-veccvecc -vecc-vecaveca -vecb] =0 has roots

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of (vecaxxveca\')+(vecbxxvecb)+(vecccxxveccc\') is (A) veca+vecb+vec (B) veca\'+vecb\'+vec\' (C) 0 (D) none of these

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of [veca\' vecb\' vecc\']^-1 is (A) 2[veca vecb vecc] (B) [veca,vecb,vecc] (C) 3[veca vecb vecc] (D) 0

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to

DISHA PUBLICATION-VECTOR ALGEBRA-EXERCISE -1 : CONCEPT BUILDER
  1. If f is the centre of a circle inscribed in a triangle ABC, then |vec...

    Text Solution

    |

  2. Let vec a, vec b and vec c are vectors of magnitude 3,4,5 respectively...

    Text Solution

    |

  3. If veca , vecb , vec c are any three coplanar unit vectors , then :

    Text Solution

    |

  4. The vector veca=alpha hati+2hatj+betahatk lies in the plane of vectors...

    Text Solution

    |

  5. Let vecu= hati+hatj, vecv = hati -hatj and vecw = hati+2hatj+3hatk. I...

    Text Solution

    |

  6. If vectors a=4hat(i)-3hat(j)+6hat(k) and vector b=-2hat(i)+2hat(j)-hat...

    Text Solution

    |

  7. A vector of magnitude 14 lies in the xy-plane and makes an angle of 60...

    Text Solution

    |

  8. If veca,vecb,vec c are unit vectors such that veca+vecb+vec c= vec0 fi...

    Text Solution

    |

  9. The two variable vectors 3xhati+yhatj-3hatk and xhati-4yhatj+4hatk are...

    Text Solution

    |

  10. Angle between the vectors sqrt3(veca xx vec b) " and " vec b - (veca ....

    Text Solution

    |

  11. If the vector veca = (2 ,log3 x ,a ) and vecb = (-3,a log3x,log3x) are...

    Text Solution

    |

  12. If veca , vecb ,vec c are the 3 vectors such that |veca| = 3, |vecb| ...

    Text Solution

    |

  13. The vectors (2hati - mhatj+ 3mk) and {(1 + m) hati -2m hatj + hatk} i...

    Text Solution

    |

  14. Let veca , vecb , vecc be three unit vectors such that |veca + vecb +...

    Text Solution

    |

  15. If veca,vecb and vecc are three vectors of which every pair is non col...

    Text Solution

    |

  16. The two vectors (x^2 - 1)hati +(x+2)hatj + x^2 hatk and 2hati -xhatj +...

    Text Solution

    |

  17. The value of 'a' for which the points A, B,C with position vectors ...

    Text Solution

    |

  18. For any vector veca the value of (vecaxxhati)^2+(vecaxxhatj)^2+(vecaxx...

    Text Solution

    |

  19. If (veca xx vecb) xx vecc = vec a xx (vecb xx vecc), where veca, vecb ...

    Text Solution

    |

  20. veca=3hati-5hatj and vecb=6hati+3hatj are two vectors and vec c is a v...

    Text Solution

    |