Home
Class 12
MATHS
Angle between the vectors sqrt3(veca xx ...

Angle between the vectors `sqrt3(veca xx vec b) " and " vec b - (veca .vecb)veca` is

A

`pi/2`

B

0

C

`pi/4`

D

`pi/3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \( \sqrt{3} (\vec{a} \times \vec{b}) \) and \( \vec{b} - (\vec{a} \cdot \vec{b}) \vec{a} \), we can use the formula for the cosine of the angle between two vectors, which is given by: \[ \cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|} \] where \( \vec{u} = \sqrt{3} (\vec{a} \times \vec{b}) \) and \( \vec{v} = \vec{b} - (\vec{a} \cdot \vec{b}) \vec{a} \). ### Step 1: Calculate \( \vec{u} \cdot \vec{v} \) First, we need to compute the dot product \( \vec{u} \cdot \vec{v} \): \[ \vec{u} \cdot \vec{v} = \sqrt{3} (\vec{a} \times \vec{b}) \cdot \left( \vec{b} - (\vec{a} \cdot \vec{b}) \vec{a} \right) \] Using the distributive property of the dot product, we can expand this: \[ \vec{u} \cdot \vec{v} = \sqrt{3} \left[ (\vec{a} \times \vec{b}) \cdot \vec{b} - (\vec{a} \cdot \vec{b}) (\vec{a} \times \vec{b}) \cdot \vec{a} \right] \] ### Step 2: Simplify the terms 1. The term \( (\vec{a} \times \vec{b}) \cdot \vec{b} \) is zero because the cross product \( \vec{a} \times \vec{b} \) is perpendicular to both \( \vec{a} \) and \( \vec{b} \). Thus, \( (\vec{a} \times \vec{b}) \cdot \vec{b} = 0 \). 2. The term \( (\vec{a} \cdot \vec{b}) (\vec{a} \times \vec{b}) \cdot \vec{a} \) is also zero because \( \vec{a} \times \vec{b} \) is perpendicular to \( \vec{a} \). Thus, \( (\vec{a} \times \vec{b}) \cdot \vec{a} = 0 \). Putting these together, we have: \[ \vec{u} \cdot \vec{v} = \sqrt{3} \left[ 0 - 0 \right] = 0 \] ### Step 3: Calculate the magnitudes of \( \vec{u} \) and \( \vec{v} \) 1. The magnitude of \( \vec{u} \): \[ |\vec{u}| = |\sqrt{3} (\vec{a} \times \vec{b})| = \sqrt{3} |\vec{a} \times \vec{b}| \] Using the formula for the magnitude of the cross product: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \] where \( \theta \) is the angle between \( \vec{a} \) and \( \vec{b} \). Thus, \[ |\vec{u}| = \sqrt{3} |\vec{a}| |\vec{b}| \sin \theta \] 2. The magnitude of \( \vec{v} \): \[ |\vec{v}| = |\vec{b} - (\vec{a} \cdot \vec{b}) \vec{a}| \] Using the projection formula, we can find: \[ |\vec{v}| = |\vec{b}| \sqrt{1 - \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}\right)^2} \] ### Step 4: Find \( \cos \theta \) Now we can substitute back into the cosine formula: \[ \cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|} = \frac{0}{|\vec{u}| |\vec{v}|} = 0 \] ### Conclusion Since \( \cos \theta = 0 \), this implies that: \[ \theta = 90^\circ \] Thus, the angle between the vectors \( \sqrt{3} (\vec{a} \times \vec{b}) \) and \( \vec{b} - (\vec{a} \cdot \vec{b}) \vec{a} \) is \( 90^\circ \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • TRIGONOMETRIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE-2|30 Videos

Similar Questions

Explore conceptually related problems

The angle between vectors (vecA xx vecB) and (vecB xx vecA) is :

Let veca and vecb be non collinear vectors of which veca is a unit vector. The angle of the triangle whose sides are represented by sqrt(3)(veca xx vecb) and vecb-(veca.vecb)veca are:

Let veca= 2hati+hatj -2hatk and vecb=hati+hatj . If vec c is a vector such that veca*vec c=|vec c|, |vec c-veca|=2sqrt(2) and the angle between vec a xx vec b and vec c is 30^(@) then |(veca xx vec b) xx vec c| is equal to :

Angle between vectors veca and vecb " where " veca,vecb and vecc are unit vectors satisfying veca + vecb + sqrt3 vecc = vec0 is

The angle between the vectors vecA and vecB is theta. The value of vecA(vecAxx vec B) is -

Let veca = 2i + j + k, and b = i+ j if c is a vector such that veca .vecc = |vecc|, |vecc -veca| = 2sqrt2 and the angle between veca xx vecb and vec is 30^(@) , then |(veca xx vecb)|xx vecc| is equal to

Let veca and vecb be two non-zero vectors perpendicular to each other and |veca|=|vecb| . If |veca xx vecb|=|veca| , then the angle between the vectors (veca +vecb+(veca xx vecb)) and veca is equal to :

If the two adjacent sides of two rectangles are reprresented by vectors vecp=5veca-3vecb, vecq=-veca-2vecband vecr=-4 veca-vecb,vecs=-veca+vecb , respectively, then the angle between the vectors vecx=1/3(vecp+vecr+vecs) and vecy=1/5(vecr+vecs) is

The angle between (vecA xx vec B) and (vecB xx vecA ) is :

If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3vecb)xx(3veca - 2vecb)=vec0 then angle between veca and vecb is

DISHA PUBLICATION-VECTOR ALGEBRA-EXERCISE -1 : CONCEPT BUILDER
  1. If veca,vecb,vec c are unit vectors such that veca+vecb+vec c= vec0 fi...

    Text Solution

    |

  2. The two variable vectors 3xhati+yhatj-3hatk and xhati-4yhatj+4hatk are...

    Text Solution

    |

  3. Angle between the vectors sqrt3(veca xx vec b) " and " vec b - (veca ....

    Text Solution

    |

  4. If the vector veca = (2 ,log3 x ,a ) and vecb = (-3,a log3x,log3x) are...

    Text Solution

    |

  5. If veca , vecb ,vec c are the 3 vectors such that |veca| = 3, |vecb| ...

    Text Solution

    |

  6. The vectors (2hati - mhatj+ 3mk) and {(1 + m) hati -2m hatj + hatk} i...

    Text Solution

    |

  7. Let veca , vecb , vecc be three unit vectors such that |veca + vecb +...

    Text Solution

    |

  8. If veca,vecb and vecc are three vectors of which every pair is non col...

    Text Solution

    |

  9. The two vectors (x^2 - 1)hati +(x+2)hatj + x^2 hatk and 2hati -xhatj +...

    Text Solution

    |

  10. The value of 'a' for which the points A, B,C with position vectors ...

    Text Solution

    |

  11. For any vector veca the value of (vecaxxhati)^2+(vecaxxhatj)^2+(vecaxx...

    Text Solution

    |

  12. If (veca xx vecb) xx vecc = vec a xx (vecb xx vecc), where veca, vecb ...

    Text Solution

    |

  13. veca=3hati-5hatj and vecb=6hati+3hatj are two vectors and vec c is a v...

    Text Solution

    |

  14. Vectors veca and vec b are inclined at an angle theta = 120^@ . If |ve...

    Text Solution

    |

  15. For any vector vecp , the value of 3/2 { |vecp xx hati|^2 + |vecp ...

    Text Solution

    |

  16. If (vec a xx vec b)^2 + (veca .vecb)^2 = 676 and |vecb| = 2, then |ve...

    Text Solution

    |

  17. What is the interior acute angle of the parallelogram whose sides are ...

    Text Solution

    |

  18. Area of rectangle having vertices A, B , C and D with position vector ...

    Text Solution

    |

  19. Let veca,vecb and vecc be non-zero vectors such that no two are collin...

    Text Solution

    |

  20. Let veca, vecb, vec c such that |veca| = 1 , |vecb| = 1 and |vec c | ...

    Text Solution

    |