Home
Class 12
MATHS
The two vectors (x^2 - 1)hati +(x+2)hatj...

The two vectors `(x^2 - 1)hati +(x+2)hatj + x^2 hatk` and `2hati -xhatj + 3hatk` are orthogonal

A

for no real value of x

B

for x = -1

C

for x = 1/2

D

for x = -1/2 and x = 1

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( x \) for which the vectors \( \mathbf{A} = (x^2 - 1) \hat{i} + (x + 2) \hat{j} + x^2 \hat{k} \) and \( \mathbf{B} = 2 \hat{i} - x \hat{j} + 3 \hat{k} \) are orthogonal, we need to find the dot product of these two vectors and set it equal to zero. ### Step 1: Write the dot product of the vectors The dot product \( \mathbf{A} \cdot \mathbf{B} \) is given by: \[ \mathbf{A} \cdot \mathbf{B} = (x^2 - 1)(2) + (x + 2)(-x) + (x^2)(3) \] ### Step 2: Expand the dot product Now, we will expand the expression: \[ = 2(x^2 - 1) - x(x + 2) + 3x^2 \] Expanding each term gives: \[ = 2x^2 - 2 - (x^2 + 2x) + 3x^2 \] ### Step 3: Combine like terms Now, we combine the like terms: \[ = 2x^2 - 2 - x^2 - 2x + 3x^2 \] Combining these results: \[ = (2x^2 - x^2 + 3x^2) - 2 - 2x \] \[ = 4x^2 - 2x - 2 \] ### Step 4: Set the dot product equal to zero Since the vectors are orthogonal, we set the dot product equal to zero: \[ 4x^2 - 2x - 2 = 0 \] ### Step 5: Simplify the equation We can simplify this equation by dividing all terms by 2: \[ 2x^2 - x - 1 = 0 \] ### Step 6: Factor the quadratic equation Next, we factor the quadratic equation: \[ 2x^2 - 2x + x - 1 = 0 \] Grouping the terms: \[ (2x^2 - 2x) + (x - 1) = 0 \] \[ 2x(x - 1) + 1(x - 1) = 0 \] Factoring out \( (x - 1) \): \[ (2x + 1)(x - 1) = 0 \] ### Step 7: Solve for \( x \) Setting each factor equal to zero gives us: 1. \( 2x + 1 = 0 \) → \( x = -\frac{1}{2} \) 2. \( x - 1 = 0 \) → \( x = 1 \) ### Final Answer Thus, the values of \( x \) for which the vectors are orthogonal are: \[ x = -\frac{1}{2} \quad \text{and} \quad x = 1 \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • TRIGONOMETRIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE-2|30 Videos

Similar Questions

Explore conceptually related problems

Find the value of lambda such that vectors veca = 2hati + lambda hatj + hatk and vecb = hati + 2hatj + 3hatk are orthogonal.

For what value of x , will the two vector A= 2hati + 2hatj -x hatk and B =2 hati - hatj - 3hatk are perpendicular to each other ?

Find x,y,z if hati+hatj+2hatk , -hati+zhatk and 2hati+xhatj+yhatk are mutually orthogonal.

If the projection of the vector hati + 2 hatj + hatk on the sum of the two vectors 2hati + 4hatj - 5hatk and -lamdahati+2hatj+ 3hatk is 1, then lamda is equal to _______

If 3hati+2hatj+8hatk and 2hati+xhatj+hatk are at right angles then x =

Find the value of lamda such that the vectors veca=2hati+lamdahatj+hatkandvecb=hati+2hatj+3hatk are orthogonal.

If three points A, B and C have position vectors hati + x hatj + 3 hatk, 3 hati + 4 hatj + 7 hatk and y hati -2hatj - 5 hatk respectively are collinear, then (x, y) =

The vectors lambdahati + hatj + 2hatk, hati + lambdahatj +hatk, 2hati - hatj + 2hatk are coplanar, if:

DISHA PUBLICATION-VECTOR ALGEBRA-EXERCISE -1 : CONCEPT BUILDER
  1. Let veca , vecb , vecc be three unit vectors such that |veca + vecb +...

    Text Solution

    |

  2. If veca,vecb and vecc are three vectors of which every pair is non col...

    Text Solution

    |

  3. The two vectors (x^2 - 1)hati +(x+2)hatj + x^2 hatk and 2hati -xhatj +...

    Text Solution

    |

  4. The value of 'a' for which the points A, B,C with position vectors ...

    Text Solution

    |

  5. For any vector veca the value of (vecaxxhati)^2+(vecaxxhatj)^2+(vecaxx...

    Text Solution

    |

  6. If (veca xx vecb) xx vecc = vec a xx (vecb xx vecc), where veca, vecb ...

    Text Solution

    |

  7. veca=3hati-5hatj and vecb=6hati+3hatj are two vectors and vec c is a v...

    Text Solution

    |

  8. Vectors veca and vec b are inclined at an angle theta = 120^@ . If |ve...

    Text Solution

    |

  9. For any vector vecp , the value of 3/2 { |vecp xx hati|^2 + |vecp ...

    Text Solution

    |

  10. If (vec a xx vec b)^2 + (veca .vecb)^2 = 676 and |vecb| = 2, then |ve...

    Text Solution

    |

  11. What is the interior acute angle of the parallelogram whose sides are ...

    Text Solution

    |

  12. Area of rectangle having vertices A, B , C and D with position vector ...

    Text Solution

    |

  13. Let veca,vecb and vecc be non-zero vectors such that no two are collin...

    Text Solution

    |

  14. Let veca, vecb, vec c such that |veca| = 1 , |vecb| = 1 and |vec c | ...

    Text Solution

    |

  15. |(a xx b).c | = |a||b||c| , if

    Text Solution

    |

  16. If veca = hati +hatj , vecb = 2hatj - hatk " and " vecr xx veca = ve...

    Text Solution

    |

  17. Let veca=hati-hatk, vecb=xhati+hatj+(1-x)hatk and vecc=yhati+xhatj+(1+...

    Text Solution

    |

  18. If veca, vecb, vec c are three non coplanar vectors , then the value ...

    Text Solution

    |

  19. Let vec(A) = 2hat(i) + hat(k), vec(B) = hat(i) + hat(j) + hat(k) and ...

    Text Solution

    |

  20. A particle is acted upon by constant forces 4hati +hatj - 3hatk and 3h...

    Text Solution

    |