Home
Class 12
MATHS
Vectors veca and vec b are inclined at a...

Vectors `veca` and `vec b` are inclined at an angle `theta = 120^@` . If `|veca| = |vecb| = 2` , then `[(veca + 3vecb) xx (3veca + vecb)]^2` is equal to

A

190

B

275

C

300

D

768

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \([( \vec{a} + 3 \vec{b} ) \times ( 3 \vec{a} + \vec{b} )]^2\) given that \(|\vec{a}| = |\vec{b}| = 2\) and the angle \(\theta = 120^\circ\) between them. ### Step-by-Step Solution: 1. **Identify the vectors and their magnitudes:** \[ |\vec{a}| = 2, \quad |\vec{b}| = 2, \quad \theta = 120^\circ \] 2. **Calculate the cross product:** We need to compute: \[ \vec{u} = \vec{a} + 3\vec{b}, \quad \vec{v} = 3\vec{a} + \vec{b} \] Then, we find \(\vec{u} \times \vec{v}\): \[ \vec{u} \times \vec{v} = (\vec{a} + 3\vec{b}) \times (3\vec{a} + \vec{b}) \] 3. **Expand the cross product using distributive property:** \[ \vec{u} \times \vec{v} = \vec{a} \times (3\vec{a}) + \vec{a} \times \vec{b} + 3\vec{b} \times (3\vec{a}) + 3\vec{b} \times \vec{b} \] Since \(\vec{a} \times \vec{a} = 0\) and \(\vec{b} \times \vec{b} = 0\), we simplify: \[ \vec{u} \times \vec{v} = 0 + \vec{a} \times \vec{b} + 9(\vec{b} \times \vec{a}) + 0 \] \[ = \vec{a} \times \vec{b} - 9(\vec{a} \times \vec{b}) = -8(\vec{a} \times \vec{b}) \] 4. **Find the magnitude of the cross product:** The magnitude of \(\vec{a} \times \vec{b}\) is given by: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \] Substituting the values: \[ |\vec{a} \times \vec{b}| = 2 \cdot 2 \cdot \sin(120^\circ) = 4 \cdot \frac{\sqrt{3}}{2} = 2\sqrt{3} \] 5. **Calculate \(|\vec{u} \times \vec{v}|\):** \[ |\vec{u} \times \vec{v}| = |-8(\vec{a} \times \vec{b})| = 8 |\vec{a} \times \vec{b}| = 8 \cdot 2\sqrt{3} = 16\sqrt{3} \] 6. **Square the magnitude:** Now we need to square this value: \[ [|\vec{u} \times \vec{v}|]^2 = (16\sqrt{3})^2 = 256 \cdot 3 = 768 \] ### Final Answer: Thus, the value of \([( \vec{a} + 3 \vec{b} ) \times ( 3 \vec{a} + \vec{b} )]^2\) is \(768\).
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • TRIGONOMETRIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE-2|30 Videos

Similar Questions

Explore conceptually related problems

vectors veca and vecb are inclined at an angle theta = 60^(@). " If " |veca|=1, |vecb| =2 , " then " [ (veca + 3vecb) xx ( 3 veca -vecb)] ^(2) is equal to

Let veca and vecb are two vectors inclined at an angle of 60^(@) , If |veca|=|vecb|=2 ,the the angle between veca and veca + vecb is

If veca and vecb are unit vectors inclined at an angle theta , then the value of |veca-vecb| is

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

Unit vectors veca and vecb ar perpendicular , and unit vector vecc is inclined at an angle theta to both veca and vecb . If alpha veca + beta vecb + gamma (veca xx vecb) then.

If (vec a xx vec b)^2 + (veca .vecb)^2 = 676 and |vecb| = 2 , then |veca| is equal to

If veca and vecb are two unit vectors inclined at an angle pi//3 then { veca xx (vecb+veca xx vecb)} .vecb is equal to

If veca and vecb are unit vectors inclined to x-axis at angle 30^(@) and 120^(@) then |veca +vecb| equals

If |veca.vecb|= |veca xx vecb| , then the angle between veca and vecb is

DISHA PUBLICATION-VECTOR ALGEBRA-EXERCISE -1 : CONCEPT BUILDER
  1. If (veca xx vecb) xx vecc = vec a xx (vecb xx vecc), where veca, vecb ...

    Text Solution

    |

  2. veca=3hati-5hatj and vecb=6hati+3hatj are two vectors and vec c is a v...

    Text Solution

    |

  3. Vectors veca and vec b are inclined at an angle theta = 120^@ . If |ve...

    Text Solution

    |

  4. For any vector vecp , the value of 3/2 { |vecp xx hati|^2 + |vecp ...

    Text Solution

    |

  5. If (vec a xx vec b)^2 + (veca .vecb)^2 = 676 and |vecb| = 2, then |ve...

    Text Solution

    |

  6. What is the interior acute angle of the parallelogram whose sides are ...

    Text Solution

    |

  7. Area of rectangle having vertices A, B , C and D with position vector ...

    Text Solution

    |

  8. Let veca,vecb and vecc be non-zero vectors such that no two are collin...

    Text Solution

    |

  9. Let veca, vecb, vec c such that |veca| = 1 , |vecb| = 1 and |vec c | ...

    Text Solution

    |

  10. |(a xx b).c | = |a||b||c| , if

    Text Solution

    |

  11. If veca = hati +hatj , vecb = 2hatj - hatk " and " vecr xx veca = ve...

    Text Solution

    |

  12. Let veca=hati-hatk, vecb=xhati+hatj+(1-x)hatk and vecc=yhati+xhatj+(1+...

    Text Solution

    |

  13. If veca, vecb, vec c are three non coplanar vectors , then the value ...

    Text Solution

    |

  14. Let vec(A) = 2hat(i) + hat(k), vec(B) = hat(i) + hat(j) + hat(k) and ...

    Text Solution

    |

  15. A particle is acted upon by constant forces 4hati +hatj - 3hatk and 3h...

    Text Solution

    |

  16. Force hati + 2hatj -3hatk , 2hati + 3hatj + 4hatk and -hati - hatj + ...

    Text Solution

    |

  17. The resultant moment of three forces hati + 2hatj -3hatk, 2hati + 3hat...

    Text Solution

    |

  18. If ((veca xx vec b ) xx (vec c xx vec d)).(vec a xx vec d)= 0 , then ...

    Text Solution

    |

  19. A force vecF = (hati - 8hatj - 7hatk) is resolved along the mutually p...

    Text Solution

    |

  20. Find the moment about the point hat i+ 2hat j+ 3hat k of a force repr...

    Text Solution

    |