Home
Class 12
MATHS
For any vector vecp , the value of 3...

For any vector `vecp` , the value of
`3/2 { |vecp xx hati|^2 + |vecp xx hatj|^2 + | vecp xx hatk|^2}` is

A

`vecp^2`

B

`2vecp^2`

C

`3vecp^2`

D

`4vecp^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \frac{3}{2} \left( |\vec{p} \times \hat{i}|^2 + |\vec{p} \times \hat{j}|^2 + |\vec{p} \times \hat{k}|^2 \right) \] where \(\vec{p}\) is a vector given by: \[ \vec{p} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \] ### Step 1: Calculate \(\vec{p} \times \hat{i}\) Using the determinant form for the cross product, we have: \[ \vec{p} \times \hat{i} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ 1 & 0 & 0 \end{vmatrix} \] Calculating this determinant, we find: \[ \vec{p} \times \hat{i} = (a_2 \cdot 0 - a_3 \cdot 0) \hat{i} - (a_1 \cdot 0 - a_3 \cdot 1) \hat{j} + (a_1 \cdot 0 - a_2 \cdot 1) \hat{k} = -a_3 \hat{j} + a_2 \hat{k} \] Thus, \[ \vec{p} \times \hat{i} = -a_3 \hat{j} + a_2 \hat{k} \] ### Step 2: Calculate the magnitude squared of \(\vec{p} \times \hat{i}\) Now we calculate: \[ |\vec{p} \times \hat{i}|^2 = |-a_3 \hat{j} + a_2 \hat{k}|^2 = (-a_3)^2 + (a_2)^2 = a_3^2 + a_2^2 \] ### Step 3: Calculate \(\vec{p} \times \hat{j}\) Similarly, for \(\vec{p} \times \hat{j}\): \[ \vec{p} \times \hat{j} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ 0 & 1 & 0 \end{vmatrix} \] Calculating this determinant gives: \[ \vec{p} \times \hat{j} = a_1 \hat{k} - a_3 \hat{i} \] Thus, \[ \vec{p} \times \hat{j} = -a_3 \hat{i} + a_1 \hat{k} \] ### Step 4: Calculate the magnitude squared of \(\vec{p} \times \hat{j}\) Now we calculate: \[ |\vec{p} \times \hat{j}|^2 = |-a_3 \hat{i} + a_1 \hat{k}|^2 = (-a_3)^2 + (a_1)^2 = a_3^2 + a_1^2 \] ### Step 5: Calculate \(\vec{p} \times \hat{k}\) For \(\vec{p} \times \hat{k}\): \[ \vec{p} \times \hat{k} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ 0 & 0 & 1 \end{vmatrix} \] Calculating this determinant gives: \[ \vec{p} \times \hat{k} = a_2 \hat{i} - a_1 \hat{j} \] ### Step 6: Calculate the magnitude squared of \(\vec{p} \times \hat{k}\) Now we calculate: \[ |\vec{p} \times \hat{k}|^2 = |a_2 \hat{i} - a_1 \hat{j}|^2 = (a_2)^2 + (-a_1)^2 = a_2^2 + a_1^2 \] ### Step 7: Substitute back into the original expression Now we substitute the values into the original expression: \[ \frac{3}{2} \left( (a_2^2 + a_3^2) + (a_1^2 + a_3^2) + (a_1^2 + a_2^2) \right) \] This simplifies to: \[ \frac{3}{2} \left( 2a_1^2 + 2a_2^2 + 2a_3^2 \right) = 3(a_1^2 + a_2^2 + a_3^2) \] ### Step 8: Final result Since \( |\vec{p}|^2 = a_1^2 + a_2^2 + a_3^2 \), we can write: \[ 3(a_1^2 + a_2^2 + a_3^2) = 3|\vec{p}|^2 \] Thus, the final answer is: \[ \frac{3}{2} \left( |\vec{p} \times \hat{i}|^2 + |\vec{p} \times \hat{j}|^2 + |\vec{p} \times \hat{k}|^2 \right) = 3|\vec{p}|^2 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • TRIGONOMETRIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE-2|30 Videos

Similar Questions

Explore conceptually related problems

For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |veca xx hatk|^(2) is equal to

If hati , hatj , hatk are units vectors and |veca| = a , then the value of | hati xx |veca|"|"^2 + |hatj xx |veca|"|"^2 +| hatk xx |veca|"|"^2 is :

For any two vectors vecp and vecq , show that |vecp.vecq| le|vecp||vecq| .

Consider two vectors vecp _(1) = 4 hati - 3 hatj + 5 hatk and vecp _(2) =- 6 hati + 3 hatj - 2 hatk . What is (vecp _(1) + vecp _(2)) . (vecp _(1) xx 5 vec p _(2)) ?

Find the resultant of two vectors vecP = 3 hati + 2hatj and vecQ = 2hati + 3 hat j

The position vector vecr and linear momentum vecp and vecr=hati and vecp=4hatj the angular momentum vector is perpendicular to

Find "a" so that the vectors vecp = 3 hati - 2hatj and vecq = 2 hati + a hatj be orthogonal.

Let vecp=hati+hatj+hatk are vecr be a variable vector such that vecr. hati , vecr. hatj and vecr. hatk are even natural numbers. If vecr.vecp le 20 , then the numbers. If vecr.vecple20 then the number of values of vecr is

If vecp,vecq and vecr are perpendicular to vecq + vecr , vec r + vecp and vecp + vecq respectively and if |vecp +vecq| = 6, |vecq + vecr| = 4sqrt3 and |vecr +vecp| = 4 then |vecp + vecq + vecr| is

DISHA PUBLICATION-VECTOR ALGEBRA-EXERCISE -1 : CONCEPT BUILDER
  1. veca=3hati-5hatj and vecb=6hati+3hatj are two vectors and vec c is a v...

    Text Solution

    |

  2. Vectors veca and vec b are inclined at an angle theta = 120^@ . If |ve...

    Text Solution

    |

  3. For any vector vecp , the value of 3/2 { |vecp xx hati|^2 + |vecp ...

    Text Solution

    |

  4. If (vec a xx vec b)^2 + (veca .vecb)^2 = 676 and |vecb| = 2, then |ve...

    Text Solution

    |

  5. What is the interior acute angle of the parallelogram whose sides are ...

    Text Solution

    |

  6. Area of rectangle having vertices A, B , C and D with position vector ...

    Text Solution

    |

  7. Let veca,vecb and vecc be non-zero vectors such that no two are collin...

    Text Solution

    |

  8. Let veca, vecb, vec c such that |veca| = 1 , |vecb| = 1 and |vec c | ...

    Text Solution

    |

  9. |(a xx b).c | = |a||b||c| , if

    Text Solution

    |

  10. If veca = hati +hatj , vecb = 2hatj - hatk " and " vecr xx veca = ve...

    Text Solution

    |

  11. Let veca=hati-hatk, vecb=xhati+hatj+(1-x)hatk and vecc=yhati+xhatj+(1+...

    Text Solution

    |

  12. If veca, vecb, vec c are three non coplanar vectors , then the value ...

    Text Solution

    |

  13. Let vec(A) = 2hat(i) + hat(k), vec(B) = hat(i) + hat(j) + hat(k) and ...

    Text Solution

    |

  14. A particle is acted upon by constant forces 4hati +hatj - 3hatk and 3h...

    Text Solution

    |

  15. Force hati + 2hatj -3hatk , 2hati + 3hatj + 4hatk and -hati - hatj + ...

    Text Solution

    |

  16. The resultant moment of three forces hati + 2hatj -3hatk, 2hati + 3hat...

    Text Solution

    |

  17. If ((veca xx vec b ) xx (vec c xx vec d)).(vec a xx vec d)= 0 , then ...

    Text Solution

    |

  18. A force vecF = (hati - 8hatj - 7hatk) is resolved along the mutually p...

    Text Solution

    |

  19. Find the moment about the point hat i+ 2hat j+ 3hat k of a force repr...

    Text Solution

    |

  20. Two forces whose magnitudes are 2N and 3N act on a particle in the dir...

    Text Solution

    |