Home
Class 12
MATHS
If (vec a xx vec b)^2 + (veca .vecb)^2 =...

If `(vec a xx vec b)^2 + (veca .vecb)^2` = 676 and `|vecb| = 2`, then `|veca|` is equal to

A

13

B

26

C

39

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ (\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = 676 \] We know the following vector identities: 1. The magnitude of the cross product: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \] Therefore, \[ (\vec{a} \times \vec{b})^2 = (|\vec{a}| |\vec{b}| \sin \theta)^2 = |\vec{a}|^2 |\vec{b}|^2 \sin^2 \theta \] 2. The magnitude of the dot product: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] Therefore, \[ (\vec{a} \cdot \vec{b})^2 = (|\vec{a}| |\vec{b}| \cos \theta)^2 = |\vec{a}|^2 |\vec{b}|^2 \cos^2 \theta \] Substituting these into the original equation gives: \[ |\vec{a}|^2 |\vec{b}|^2 \sin^2 \theta + |\vec{a}|^2 |\vec{b}|^2 \cos^2 \theta = 676 \] Factoring out \( |\vec{a}|^2 |\vec{b}|^2 \): \[ |\vec{a}|^2 |\vec{b}|^2 (\sin^2 \theta + \cos^2 \theta) = 676 \] Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ |\vec{a}|^2 |\vec{b}|^2 = 676 \] Given that \( |\vec{b}| = 2 \): \[ |\vec{a}|^2 (2^2) = 676 \] This simplifies to: \[ |\vec{a}|^2 \cdot 4 = 676 \] Dividing both sides by 4: \[ |\vec{a}|^2 = \frac{676}{4} = 169 \] Taking the square root of both sides gives: \[ |\vec{a}| = \sqrt{169} = 13 \] Thus, the magnitude of \( \vec{a} \) is: \[ |\vec{a}| = 13 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • TRIGONOMETRIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE-2|30 Videos

Similar Questions

Explore conceptually related problems

If | veca| = 2 |vecb|=5 and | veca xx vecb| = 8 , then | veca. vecb| is equal to :

If [vec a vecb vec c] ne 0 and vecP=(vec b xx vec c)/([veca vecb vec c]), vecq=(vec c xx veca)/([veca vec b vec c]), vec r =(vec a xx vec b)/([veca vecb vec c ]) , then veca. vecp+ vecb. vecq+ vec c.vecr is equal to …………

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

If [veca xx vecb vecb xx vec c vec c xx vec a] = lamda [veca vecb vec c ]^2 then lamda is equal to

Let veca , vecb, vec c be three non coplanar vectors , and let vecp , vecq " and " vec r be the vectors defined by the relation vecp = (vecb xx vec c )/([veca vecb vec c ]), vec q = (vec c xx vec a)/([veca vecb vec c ]) " and " vec r = (vec a xx vec b)/([veca vecb vec c ]) Then the value of the expension (vec a + vec b) .vec p + (vecb + vec c) .q + (vec c + vec a) . vec r is equal to

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc^(2)] , then lambda is equal to

If veca, vecb are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

Let veca, vecb, vec c such that |veca| = 1 , |vecb| = 1 and |vec c | = 2 and if veca xx (veca xx vec c ) + vec b = 0 then find acute angle between veca and vec c

DISHA PUBLICATION-VECTOR ALGEBRA-EXERCISE -1 : CONCEPT BUILDER
  1. veca=3hati-5hatj and vecb=6hati+3hatj are two vectors and vec c is a v...

    Text Solution

    |

  2. Vectors veca and vec b are inclined at an angle theta = 120^@ . If |ve...

    Text Solution

    |

  3. For any vector vecp , the value of 3/2 { |vecp xx hati|^2 + |vecp ...

    Text Solution

    |

  4. If (vec a xx vec b)^2 + (veca .vecb)^2 = 676 and |vecb| = 2, then |ve...

    Text Solution

    |

  5. What is the interior acute angle of the parallelogram whose sides are ...

    Text Solution

    |

  6. Area of rectangle having vertices A, B , C and D with position vector ...

    Text Solution

    |

  7. Let veca,vecb and vecc be non-zero vectors such that no two are collin...

    Text Solution

    |

  8. Let veca, vecb, vec c such that |veca| = 1 , |vecb| = 1 and |vec c | ...

    Text Solution

    |

  9. |(a xx b).c | = |a||b||c| , if

    Text Solution

    |

  10. If veca = hati +hatj , vecb = 2hatj - hatk " and " vecr xx veca = ve...

    Text Solution

    |

  11. Let veca=hati-hatk, vecb=xhati+hatj+(1-x)hatk and vecc=yhati+xhatj+(1+...

    Text Solution

    |

  12. If veca, vecb, vec c are three non coplanar vectors , then the value ...

    Text Solution

    |

  13. Let vec(A) = 2hat(i) + hat(k), vec(B) = hat(i) + hat(j) + hat(k) and ...

    Text Solution

    |

  14. A particle is acted upon by constant forces 4hati +hatj - 3hatk and 3h...

    Text Solution

    |

  15. Force hati + 2hatj -3hatk , 2hati + 3hatj + 4hatk and -hati - hatj + ...

    Text Solution

    |

  16. The resultant moment of three forces hati + 2hatj -3hatk, 2hati + 3hat...

    Text Solution

    |

  17. If ((veca xx vec b ) xx (vec c xx vec d)).(vec a xx vec d)= 0 , then ...

    Text Solution

    |

  18. A force vecF = (hati - 8hatj - 7hatk) is resolved along the mutually p...

    Text Solution

    |

  19. Find the moment about the point hat i+ 2hat j+ 3hat k of a force repr...

    Text Solution

    |

  20. Two forces whose magnitudes are 2N and 3N act on a particle in the dir...

    Text Solution

    |