Home
Class 12
MATHS
Let veca, vecb, vec c such that |veca| =...

Let `veca, vecb, vec c` such that `|veca| = 1 , |vecb| = 1` and `|vec c | = 2` and if `veca xx (veca xx vec c ) + vec b = 0` then find acute angle between `veca ` and `vec c `

A

`pi/6`

B

`pi/4`

C

`pi/3`

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the properties of vector algebra, particularly the vector triple product and the dot product. ### Step-by-Step Solution: 1. **Given Information**: We have three vectors: - \( \vec{a} \) such that \( |\vec{a}| = 1 \) - \( \vec{b} \) such that \( |\vec{b}| = 1 \) - \( \vec{c} \) such that \( |\vec{c}| = 2 \) - The equation given is \( \vec{a} \times (\vec{a} \times \vec{c}) + \vec{b} = 0 \). 2. **Using the Vector Triple Product Identity**: The vector triple product identity states: \[ \vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w}) \vec{v} - (\vec{u} \cdot \vec{v}) \vec{w} \] Applying this to our equation: \[ \vec{a} \times (\vec{a} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{a} - (\vec{a} \cdot \vec{a}) \vec{c} \] Since \( |\vec{a}|^2 = 1 \), we can simplify: \[ \vec{a} \times (\vec{a} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{a} - \vec{c} \] 3. **Substituting into the Equation**: Now substituting this back into the original equation: \[ (\vec{a} \cdot \vec{c}) \vec{a} - \vec{c} + \vec{b} = 0 \] Rearranging gives us: \[ (\vec{a} \cdot \vec{c}) \vec{a} = \vec{c} - \vec{b} \] 4. **Taking Magnitudes**: Taking the magnitude of both sides: \[ |(\vec{a} \cdot \vec{c}) \vec{a}| = |\vec{c} - \vec{b}| \] Since \( |\vec{a}| = 1 \), we have: \[ |\vec{a} \cdot \vec{c}| = |\vec{c} - \vec{b}| \] 5. **Finding the Magnitude of \( \vec{c} - \vec{b} \)**: We can use the formula for the magnitude of a vector: \[ |\vec{c} - \vec{b}|^2 = |\vec{c}|^2 + |\vec{b}|^2 - 2(\vec{c} \cdot \vec{b}) \] Substituting the known magnitudes: \[ |\vec{c}|^2 = 4, \quad |\vec{b}|^2 = 1 \] Thus: \[ |\vec{c} - \vec{b}|^2 = 4 + 1 - 2(\vec{c} \cdot \vec{b}) = 5 - 2(\vec{c} \cdot \vec{b}) \] 6. **Equating the Magnitudes**: From step 4, we have: \[ |\vec{a} \cdot \vec{c}| = \sqrt{5 - 2(\vec{c} \cdot \vec{b})} \] Since \( |\vec{a} \cdot \vec{c}| = |\vec{c}| \cos \theta \) where \( \theta \) is the angle between \( \vec{a} \) and \( \vec{c} \): \[ |\vec{a} \cdot \vec{c}| = 2 \cos \theta \] 7. **Setting Up the Equation**: We can set up the equation: \[ 2 \cos \theta = \sqrt{5 - 2(\vec{c} \cdot \vec{b})} \] 8. **Finding the Angle**: To find the acute angle \( \theta \), we need to express \( \vec{c} \cdot \vec{b} \) in terms of \( \cos \theta \). Since \( \vec{b} \) is also a unit vector, we can find \( \cos \theta \) using the known values: \[ 2 \cos \theta = \sqrt{3} \implies \cos \theta = \frac{\sqrt{3}}{2} \] Therefore, \( \theta = \cos^{-1} \left( \frac{\sqrt{3}}{2} \right) = \frac{\pi}{6} \) radians or \( 30^\circ \). ### Final Answer: The acute angle between \( \vec{a} \) and \( \vec{c} \) is \( \frac{\pi}{6} \) radians or \( 30^\circ \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • TRIGONOMETRIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE-2|30 Videos

Similar Questions

Explore conceptually related problems

If vecA xx vecB= vec0 and vecB xx vecC=vec0 , then the angle between vecA and vecC may be :

If veca+vecb=vec c and a+b=c, what is the angle between veca and vecb ?

Let the vectors veca, vecb, vecc be such that |veca| = 2 |vecb| = 4 " and " |vec c| = 4 . If the projection of vecb on veca is equal to the projection of vec c on veca and vec b is perpendicular to vec c , then the value of |veca + vecb - vec c | is ______ .

If veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7 , then the angle between veca and vecb is

If veca , vecb ,vec c are the 3 vectors such that |veca| = 3, |vecb| = 4,|vec c| = 5, |veca + vecb + vec c | = 0 then the value of veca.vecb + vecb.vec c + vec c .vec a is :

If three unit vectors veca, vecb and vecc " satisfy" veca+vecb+vecc= vec0 . Then find the angle between veca and vecb .

Given that veca=(1,1,1), vec c=(0,1,-1)and veca. vecb=3 . If veca xx vecb=vec c , then vecb=

If veca+vecb=vec c and c=sqrt(a^2+b^2) . What is the angle between veca and vecb ?

If two vectors vec aa n d vec b are such that |veca|=3, |vecb|=2 and veca.vecb=6, . , Find | vec a+ vec b|a n d| vec a- vec b|dot

Let veca vecb and vecc be three non-zero vectors such that veca + vecb + vecc = vec0 and lambda vecb xx veca xx veca + vecbxxvecc + vecc + veca = vec0 then find the value of lambda .

DISHA PUBLICATION-VECTOR ALGEBRA-EXERCISE -1 : CONCEPT BUILDER
  1. veca=3hati-5hatj and vecb=6hati+3hatj are two vectors and vec c is a v...

    Text Solution

    |

  2. Vectors veca and vec b are inclined at an angle theta = 120^@ . If |ve...

    Text Solution

    |

  3. For any vector vecp , the value of 3/2 { |vecp xx hati|^2 + |vecp ...

    Text Solution

    |

  4. If (vec a xx vec b)^2 + (veca .vecb)^2 = 676 and |vecb| = 2, then |ve...

    Text Solution

    |

  5. What is the interior acute angle of the parallelogram whose sides are ...

    Text Solution

    |

  6. Area of rectangle having vertices A, B , C and D with position vector ...

    Text Solution

    |

  7. Let veca,vecb and vecc be non-zero vectors such that no two are collin...

    Text Solution

    |

  8. Let veca, vecb, vec c such that |veca| = 1 , |vecb| = 1 and |vec c | ...

    Text Solution

    |

  9. |(a xx b).c | = |a||b||c| , if

    Text Solution

    |

  10. If veca = hati +hatj , vecb = 2hatj - hatk " and " vecr xx veca = ve...

    Text Solution

    |

  11. Let veca=hati-hatk, vecb=xhati+hatj+(1-x)hatk and vecc=yhati+xhatj+(1+...

    Text Solution

    |

  12. If veca, vecb, vec c are three non coplanar vectors , then the value ...

    Text Solution

    |

  13. Let vec(A) = 2hat(i) + hat(k), vec(B) = hat(i) + hat(j) + hat(k) and ...

    Text Solution

    |

  14. A particle is acted upon by constant forces 4hati +hatj - 3hatk and 3h...

    Text Solution

    |

  15. Force hati + 2hatj -3hatk , 2hati + 3hatj + 4hatk and -hati - hatj + ...

    Text Solution

    |

  16. The resultant moment of three forces hati + 2hatj -3hatk, 2hati + 3hat...

    Text Solution

    |

  17. If ((veca xx vec b ) xx (vec c xx vec d)).(vec a xx vec d)= 0 , then ...

    Text Solution

    |

  18. A force vecF = (hati - 8hatj - 7hatk) is resolved along the mutually p...

    Text Solution

    |

  19. Find the moment about the point hat i+ 2hat j+ 3hat k of a force repr...

    Text Solution

    |

  20. Two forces whose magnitudes are 2N and 3N act on a particle in the dir...

    Text Solution

    |