Home
Class 12
MATHS
If veca = hati +hatj , vecb = 2hatj - ...

If `veca = hati +hatj , vecb = 2hatj - hatk " and " vecr xx veca = vecb xx vec a , vecr xx vec b = veca xx vec b` , then what is the value of `(vec r)/(|vec r|)`

A

`((hati + 3hatj -hatk))/(sqrt11)`

B

`((hati - 3hatj + hatk))/(sqrt11)`

C

`((hati + 3hatj + hatk))/(sqrt11)`

D

`((hati -3hatj -hatk))/(sqrt11)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the unit vector of vector **R** given the conditions involving cross products. Let's break down the steps: ### Step 1: Define the vectors Given: - \(\vec{a} = \hat{i} + \hat{j}\) - \(\vec{b} = 2\hat{j} - \hat{k}\) Let \(\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}\). ### Step 2: Compute \(\vec{r} \times \vec{a}\) Using the determinant form for the cross product: \[ \vec{r} \times \vec{a} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ 1 & 1 & 0 \end{vmatrix} \] Calculating the determinant: \[ \vec{r} \times \vec{a} = \hat{i}(y \cdot 0 - z \cdot 1) - \hat{j}(x \cdot 0 - z \cdot 1) + \hat{k}(x \cdot 1 - y \cdot 1) \] \[ = -z\hat{i} + z\hat{j} + (x - y)\hat{k} \] \[ = -z\hat{i} + z\hat{j} + (x - y)\hat{k} \] ### Step 3: Compute \(\vec{b} \times \vec{a}\) Now, we compute \(\vec{b} \times \vec{a}\): \[ \vec{b} \times \vec{a} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 2 & -1 \\ 1 & 1 & 0 \end{vmatrix} \] Calculating the determinant: \[ \vec{b} \times \vec{a} = \hat{i}(2 \cdot 0 - (-1) \cdot 1) - \hat{j}(0 \cdot 0 - (-1) \cdot 1) + \hat{k}(0 \cdot 1 - 2 \cdot 1) \] \[ = \hat{i}(1) - \hat{j}(1) - 2\hat{k} \] \[ = \hat{i} - \hat{j} - 2\hat{k} \] ### Step 4: Set up the equation From the problem, we have: \[ \vec{r} \times \vec{a} = \vec{b} \times \vec{a} \] This gives us: \[ -z\hat{i} + z\hat{j} + (x - y)\hat{k} = \hat{i} - \hat{j} - 2\hat{k} \] ### Step 5: Equate coefficients From the above equation, we can equate the coefficients of \(\hat{i}\), \(\hat{j}\), and \(\hat{k}\): 1. For \(\hat{i}\): \(-z = 1\) ⇒ \(z = -1\) 2. For \(\hat{j}\): \(z = -1\) ⇒ \(z = -1\) (consistent) 3. For \(\hat{k}\): \(x - y = -2\) ### Step 6: Solve for \(x\) and \(y\) Now we need to solve for \(x\) and \(y\) using the second condition: \[ \vec{r} \times \vec{b} = \vec{a} \times \vec{b} \] Calculating \(\vec{a} \times \vec{b}\): \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 0 \\ 0 & 2 & -1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}(1 \cdot (-1) - 0 \cdot 2) - \hat{j}(1 \cdot (-1) - 0 \cdot 0) + \hat{k}(1 \cdot 2 - 1 \cdot 0) \] \[ = -\hat{i} + \hat{j} + 2\hat{k} \] Now we set up the equation: \[ \vec{r} \times \vec{b} = -\hat{i} + \hat{j} + 2\hat{k} \] ### Step 7: Compute \(\vec{r} \times \vec{b}\) \[ \vec{r} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ 0 & 2 & -1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}(y \cdot (-1) - z \cdot 2) - \hat{j}(x \cdot (-1) - z \cdot 0) + \hat{k}(x \cdot 2 - y \cdot 0) \] \[ = -y - 2z\hat{i} + x\hat{j} + 2x\hat{k} \] ### Step 8: Equate coefficients again Setting this equal to \(-\hat{i} + \hat{j} + 2\hat{k}\): 1. For \(\hat{i}\): \(-y - 2z = -1\) 2. For \(\hat{j}\): \(x = 1\) 3. For \(\hat{k}\): \(2x = 2\) From \(2x = 2\), we find \(x = 1\). Substituting \(z = -1\) into \(-y - 2(-1) = -1\): \[ -y + 2 = -1 \Rightarrow -y = -3 \Rightarrow y = 3 \] ### Step 9: Final vector \(\vec{r}\) Thus, we have: \[ \vec{r} = 1\hat{i} + 3\hat{j} - 1\hat{k} \] ### Step 10: Find the unit vector \(\frac{\vec{r}}{|\vec{r}|}\) Now, we need to find \(|\vec{r}|\): \[ |\vec{r}| = \sqrt{1^2 + 3^2 + (-1)^2} = \sqrt{1 + 9 + 1} = \sqrt{11} \] Thus, the unit vector is: \[ \frac{\vec{r}}{|\vec{r}|} = \frac{1\hat{i} + 3\hat{j} - 1\hat{k}}{\sqrt{11}} = \frac{1}{\sqrt{11}}\hat{i} + \frac{3}{\sqrt{11}}\hat{j} - \frac{1}{\sqrt{11}}\hat{k} \] ### Final Answer The value of \(\frac{\vec{r}}{|\vec{r}|}\) is: \[ \frac{1}{\sqrt{11}}\hat{i} + \frac{3}{\sqrt{11}}\hat{j} - \frac{1}{\sqrt{11}}\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • TRIGONOMETRIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE-2|30 Videos

Similar Questions

Explore conceptually related problems

If [veca xx vecb vecb xx vec c vec c xx vec a] = lamda [veca vecb vec c ]^2 then lamda is equal to

Let veca=hati-3hatj+4hatk , vecB=6hati+4hatj-8hatk , vecC=5hati+2hatj+5hatk and a vector vecR satisfies vecR xx vecB = vecC xx vecB , vecR.vecA=0 , then the value of (|vecB|)/(|vecR-vecC|) is

if veca xx vecb = vecc.vecb xx vecc = veca , " where " vecc ne vec0 then

if veca xx vecb = vecc.vecb xx vecc = veca , " where " vecc ne vec0 then

Let vec a=hati+2hatj-hatk , vec b=hati-hatj , vec c=hati-hatj-hatk ,and vecrxxveca = vecc xx veca , vecr*vecb=0 . Find vecr*veca

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca=2hati+ 3hatj-5hatk,vecb =m hati+nhatj +12 hatk and veca xx vecb = vec0 then find (m,n)

If veca=2hati+ 3hatj-5hatk,vecb =m hati+nhatj +12 hatk and veca xx vecb = vec0 then find (m,n)

if veca=hati+hatj+2hatk, vecb=hati+2hatj+2hatk and |vecc|=1 Such that [veca xx vecb vecb xx vecc vecc xx veca] has maximum value, then the value of |(veca xx vecb) xx vecc|^(2) is

DISHA PUBLICATION-VECTOR ALGEBRA-EXERCISE -1 : CONCEPT BUILDER
  1. veca=3hati-5hatj and vecb=6hati+3hatj are two vectors and vec c is a v...

    Text Solution

    |

  2. Vectors veca and vec b are inclined at an angle theta = 120^@ . If |ve...

    Text Solution

    |

  3. For any vector vecp , the value of 3/2 { |vecp xx hati|^2 + |vecp ...

    Text Solution

    |

  4. If (vec a xx vec b)^2 + (veca .vecb)^2 = 676 and |vecb| = 2, then |ve...

    Text Solution

    |

  5. What is the interior acute angle of the parallelogram whose sides are ...

    Text Solution

    |

  6. Area of rectangle having vertices A, B , C and D with position vector ...

    Text Solution

    |

  7. Let veca,vecb and vecc be non-zero vectors such that no two are collin...

    Text Solution

    |

  8. Let veca, vecb, vec c such that |veca| = 1 , |vecb| = 1 and |vec c | ...

    Text Solution

    |

  9. |(a xx b).c | = |a||b||c| , if

    Text Solution

    |

  10. If veca = hati +hatj , vecb = 2hatj - hatk " and " vecr xx veca = ve...

    Text Solution

    |

  11. Let veca=hati-hatk, vecb=xhati+hatj+(1-x)hatk and vecc=yhati+xhatj+(1+...

    Text Solution

    |

  12. If veca, vecb, vec c are three non coplanar vectors , then the value ...

    Text Solution

    |

  13. Let vec(A) = 2hat(i) + hat(k), vec(B) = hat(i) + hat(j) + hat(k) and ...

    Text Solution

    |

  14. A particle is acted upon by constant forces 4hati +hatj - 3hatk and 3h...

    Text Solution

    |

  15. Force hati + 2hatj -3hatk , 2hati + 3hatj + 4hatk and -hati - hatj + ...

    Text Solution

    |

  16. The resultant moment of three forces hati + 2hatj -3hatk, 2hati + 3hat...

    Text Solution

    |

  17. If ((veca xx vec b ) xx (vec c xx vec d)).(vec a xx vec d)= 0 , then ...

    Text Solution

    |

  18. A force vecF = (hati - 8hatj - 7hatk) is resolved along the mutually p...

    Text Solution

    |

  19. Find the moment about the point hat i+ 2hat j+ 3hat k of a force repr...

    Text Solution

    |

  20. Two forces whose magnitudes are 2N and 3N act on a particle in the dir...

    Text Solution

    |