Home
Class 12
MATHS
If veca, vecb, vec c are three non copl...

If `veca, vecb, vec c ` are three non coplanar vectors , then the value of `(vec a.(vec b xx vec c) )/((vec c xx vec a).vec b) + ( vecb.(vec a xx vec c ))/(vec c.(vec a xx vec b))`is

A

0

B

2

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}) \cdot \vec{b}} + \frac{\vec{b} \cdot (\vec{a} \times \vec{c})}{\vec{c} \cdot (\vec{a} \times \vec{b})} \] ### Step 1: Recognize the Scalar Triple Product The term \(\vec{a} \cdot (\vec{b} \times \vec{c})\) is known as the scalar triple product, which can be denoted as \([\vec{a}, \vec{b}, \vec{c}]\). This scalar triple product represents the volume of the parallelepiped formed by the vectors \(\vec{a}, \vec{b}, \vec{c}\). ### Step 2: Apply the Cyclic Property The scalar triple product has a cyclic property: \[ [\vec{a}, \vec{b}, \vec{c}] = [\vec{b}, \vec{c}, \vec{a}] = [\vec{c}, \vec{a}, \vec{b}] \] Thus, we can express the terms in the numerator using this property. ### Step 3: Rewrite the Denominators The denominator \((\vec{c} \times \vec{a}) \cdot \vec{b}\) can also be expressed as \([\vec{b}, \vec{c}, \vec{a}]\) and \(\vec{c} \cdot (\vec{a} \times \vec{b})\) as \([\vec{a}, \vec{b}, \vec{c}]\). ### Step 4: Substitute into the Expression Substituting these into our expression gives: \[ \frac{[\vec{a}, \vec{b}, \vec{c}]}{[\vec{b}, \vec{c}, \vec{a}]} + \frac{[\vec{b}, \vec{a}, \vec{c}]}{[\vec{a}, \vec{b}, \vec{c}]} \] ### Step 5: Simplify the Expression Using the cyclic property: 1. The first term becomes \(\frac{[\vec{a}, \vec{b}, \vec{c}]}{[\vec{b}, \vec{c}, \vec{a}]} = 1\) because \([\vec{b}, \vec{c}, \vec{a}] = [\vec{a}, \vec{b}, \vec{c}]\). 2. The second term simplifies to \(\frac{[\vec{b}, \vec{a}, \vec{c}]}{[\vec{a}, \vec{b}, \vec{c}]} = -1\) because switching two vectors in the scalar triple product changes its sign. ### Step 6: Combine the Results Thus, we have: \[ 1 + (-1) = 0 \] ### Final Result The value of the given expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -2 : CONCEPT APPLICATOR|30 Videos
  • TRIGONOMETRIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE-2|30 Videos

Similar Questions

Explore conceptually related problems

If vec a,vec b, and vec c are three non-coplanar vectors,then find the value of (vec a*(vec b xxvec c))/(vec b*(vec c xxvec a))+(vec b*(vec c xxvec a))/(vec c*(vec a xxvec b))+(vec c*(vec b xxvec a))/(vec a xxvec c))

If vec a,vec b,vec c be any three non-zero non coplanar vectors and vectors vec p=(vec b xx vec c)/(vec a.vec b xx vec c),vec q=(vec c xx vec a)/(vec a.vec b xx vec c) vec r=(vec a xx vec b)/(veca.vec b xx vec c), then [vec p vec q vec r] equals -

The vectors vec a xx (vec b xxvec c), vec b xx (vec c xxvec a), vec c xx (vec a xxvec b) are

The vectors vec a xx (vec b xxvec c), vec b xx (vec c xxvec a) and vec c xx (vec a xxvec b) are

If the vectors vec a, vec b, vec c are coplanar, then the value of | (vec a, vec b, vec c), (vec a * vec a, vec a * vec b, vec a * vec c), (vec b * vec a, vec b * vec b, vecb * vec c) | =

If vec a,vec c,vec d are non-coplanar vectors,then vec d*{vec a xx[vec b xx(vec c xxvec d)]} is equal to

vec a, vec b, vec c are non-coplanar vectors, express vec a xx (vec b xxvec c) as a linear combination of vec a, vec b, vec c

If vec a, vec b, vec c are three vectors such that | vec b | = | vec c | then {(vec a + vec b) xx (vec a + vec c)} xx {(vec b xxvec c)} * (vec b + vec c) =

If bar(A_(1))bar(B) and bar( C ) are three non-coplanar voctors, then (vec(B).(vec(A)xx vec( C )))/((vec( C )xx vec(A)).vec(B))+(vec(B).(vec(A)xx vec( C )))/(vec( C ).(vec(A)xx vec(B))) is equal to

Let veca , vecb, vec c be three non coplanar vectors , and let vecp , vecq " and " vec r be the vectors defined by the relation vecp = (vecb xx vec c )/([veca vecb vec c ]), vec q = (vec c xx vec a)/([veca vecb vec c ]) " and " vec r = (vec a xx vec b)/([veca vecb vec c ]) Then the value of the expension (vec a + vec b) .vec p + (vecb + vec c) .q + (vec c + vec a) . vec r is equal to

DISHA PUBLICATION-VECTOR ALGEBRA-EXERCISE -1 : CONCEPT BUILDER
  1. veca=3hati-5hatj and vecb=6hati+3hatj are two vectors and vec c is a v...

    Text Solution

    |

  2. Vectors veca and vec b are inclined at an angle theta = 120^@ . If |ve...

    Text Solution

    |

  3. For any vector vecp , the value of 3/2 { |vecp xx hati|^2 + |vecp ...

    Text Solution

    |

  4. If (vec a xx vec b)^2 + (veca .vecb)^2 = 676 and |vecb| = 2, then |ve...

    Text Solution

    |

  5. What is the interior acute angle of the parallelogram whose sides are ...

    Text Solution

    |

  6. Area of rectangle having vertices A, B , C and D with position vector ...

    Text Solution

    |

  7. Let veca,vecb and vecc be non-zero vectors such that no two are collin...

    Text Solution

    |

  8. Let veca, vecb, vec c such that |veca| = 1 , |vecb| = 1 and |vec c | ...

    Text Solution

    |

  9. |(a xx b).c | = |a||b||c| , if

    Text Solution

    |

  10. If veca = hati +hatj , vecb = 2hatj - hatk " and " vecr xx veca = ve...

    Text Solution

    |

  11. Let veca=hati-hatk, vecb=xhati+hatj+(1-x)hatk and vecc=yhati+xhatj+(1+...

    Text Solution

    |

  12. If veca, vecb, vec c are three non coplanar vectors , then the value ...

    Text Solution

    |

  13. Let vec(A) = 2hat(i) + hat(k), vec(B) = hat(i) + hat(j) + hat(k) and ...

    Text Solution

    |

  14. A particle is acted upon by constant forces 4hati +hatj - 3hatk and 3h...

    Text Solution

    |

  15. Force hati + 2hatj -3hatk , 2hati + 3hatj + 4hatk and -hati - hatj + ...

    Text Solution

    |

  16. The resultant moment of three forces hati + 2hatj -3hatk, 2hati + 3hat...

    Text Solution

    |

  17. If ((veca xx vec b ) xx (vec c xx vec d)).(vec a xx vec d)= 0 , then ...

    Text Solution

    |

  18. A force vecF = (hati - 8hatj - 7hatk) is resolved along the mutually p...

    Text Solution

    |

  19. Find the moment about the point hat i+ 2hat j+ 3hat k of a force repr...

    Text Solution

    |

  20. Two forces whose magnitudes are 2N and 3N act on a particle in the dir...

    Text Solution

    |