Home
Class 12
MATHS
Let veca , vecb and vec c be non copl...

Let `veca , vecb` and `vec c ` be non coplanar unit vectors equally inclined to one another at an acute angle `theta` . Then `|[veca vecb vec c]|` in terms of `theta` is equal to

A

`(1 + cos theta) sqrt(cos 2theta)`

B

`(1+ cos theta) sqrt(1 - 2 cos 2theta)`

C

`(1 - cos theta) sqrt(1 + 2 cos theta)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the scalar triple product \(|[\vec{a}, \vec{b}, \vec{c}]|\) in terms of the acute angle \(\theta\) between the non-coplanar unit vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). ### Step-by-Step Solution: 1. **Understanding the Dot Products**: Since \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are unit vectors and are equally inclined to one another at an angle \(\theta\), we can express the dot products as follows: \[ \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = \cos \theta \] 2. **Setting Up the Determinant**: The scalar triple product can be represented as the determinant of a matrix formed by the components of the vectors: \[ |[\vec{a}, \vec{b}, \vec{c}]| = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} \] 3. **Using the Properties of Determinants**: We can expand this determinant using the properties of dot products. The determinant can be expressed in terms of the dot products we calculated earlier: \[ |[\vec{a}, \vec{b}, \vec{c}]|^2 = 1 - (\vec{a} \cdot \vec{b})^2 - (\vec{b} \cdot \vec{c})^2 - (\vec{c} \cdot \vec{a})^2 + 2(\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c})(\vec{c} \cdot \vec{a}) \] 4. **Substituting the Values**: Substituting \(\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = \cos \theta\) into the equation gives: \[ |[\vec{a}, \vec{b}, \vec{c}]|^2 = 1 - 3\cos^2 \theta + 2\cos^3 \theta \] 5. **Simplifying the Expression**: Rearranging the expression, we have: \[ |[\vec{a}, \vec{b}, \vec{c}]|^2 = 2\cos^3 \theta - 3\cos^2 \theta + 1 \] 6. **Finding the Modulus**: To find \(|[\vec{a}, \vec{b}, \vec{c}]|\), we take the square root: \[ |[\vec{a}, \vec{b}, \vec{c}]| = \sqrt{2\cos^3 \theta - 3\cos^2 \theta + 1} \] 7. **Final Expression**: We can express this in a more usable form: \[ |[\vec{a}, \vec{b}, \vec{c}]| = (1 - \cos \theta) \sqrt{1 + 2\cos \theta} \] ### Final Answer: \[ |[\vec{a}, \vec{b}, \vec{c}]| = (1 - \cos \theta) \sqrt{1 + 2\cos \theta} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -1 : CONCEPT BUILDER|60 Videos
  • TRIGONOMETRIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE-2|30 Videos

Similar Questions

Explore conceptually related problems

Let veca, vecb and vecc be non - coplanar unit vectors, equally inclined to one another at an angle theta . If veca xx vecb + vecb xx vecc = p veca + q vecb + rvecc , find scalars p, q and r in terms of theta .

If veca , vecb , vec c are any three coplanar unit vectors , then :

Let vec a,vec b, and vec c be non-coplanar unit vectors,equally inclined to one another at an angle theta. If vec a xxvec b+vec b xxvec c=pvec a+qvec b+rvec c, find scalars p,q and r in terms of theta .

veca , vecb , vecc are mutually bot unit vectors equally inclined to veca+vecb+vecc at an angle theta then find the value of 36cos^2(2theta)

If veca and vecb are unit vectors inclined at an angle theta , then the value of |veca-vecb| is

If veca and vecb are unit vectors inclined to x-axis at angle 30^(@) and 120^(@) then |veca +vecb| equals

If veca and vecb are unit vector and theta is the angle between then, then |(veca - vecb)/2| is:

veca and vecb are two unit vectors that are mutually perpendicular. A unit vector that if equally inclined to veca, vecb and veca xxvecb is equal to

Let veca,vecb and vecc be the non zero vectors such that (vecaxxvecb)xxvecc=1/3 |vecb||vecc|veca. if theta is the acute angle between the vectors vecb and veca then theta equals (A) 1/3 (B) sqrt(2)/3 (C) 2/3 (D) 2sqrt(2)/3

DISHA PUBLICATION-VECTOR ALGEBRA-EXERCISE -2 : CONCEPT APPLICATOR
  1. veca, vecb ,vec c are three vectors with magnitude |veca| = 4, |vecb|...

    Text Solution

    |

  2. If the two adjacent sides of two rectangles are represented by vect...

    Text Solution

    |

  3. OA, OB, OC are the sides of a rectangular parallelopiped whose diagona...

    Text Solution

    |

  4. If the positive numbers a, b and c are the pth, qth and rth terms of G...

    Text Solution

    |

  5. A vector veca=(x,y,z) makes an obtuse angle with F-axis, and make equa...

    Text Solution

    |

  6. Let vecOB = hati + 2hatj + 2hatk " and" vecOA = 4hati + 2hatj + 2hatk ...

    Text Solution

    |

  7. If a1 , a2 and a3 are three numbers satisfying a1^2 + a2^2 +a3^2 = 1 ,...

    Text Solution

    |

  8. Let veca , vecb and vec c be non coplanar unit vectors equally incl...

    Text Solution

    |

  9. Let veca , vecb, vec c be three non coplanar vectors , and let vecp ,...

    Text Solution

    |

  10. Let veca= 2hati+hatj -2hatk and vecb=hati+hatj. If vec c is a vecto...

    Text Solution

    |

  11. Let vec r , vec a , vec b and vec c be four non zero vectors such tha...

    Text Solution

    |

  12. Let vec r = (veca xx vecb) sin x + (vecb + vec c) cos y + 2 (vec c xx...

    Text Solution

    |

  13. A girl walks 4 km towards west, then she walks 3 km in a direction 30...

    Text Solution

    |

  14. If vec a+vec b+vec c=0, prove that (vec a xx vec b)=(vec b xx vec c)=(...

    Text Solution

    |

  15. If |vec a + vecb| = |vec a - vecb| , then which one of the following i...

    Text Solution

    |

  16. The resultant of forces vecP and vec Q is vecR . If vec Q is doubled t...

    Text Solution

    |

  17. If vec b is a vector whose initial point divides thejoin of 5 hat ...

    Text Solution

    |

  18. A body travels a distance s in t seconds. It starts from rest and ends...

    Text Solution

    |

  19. Two particles start simultaneously from the same point and move along ...

    Text Solution

    |

  20. vec p , vec q ,a n d vec r are three mutually perpendicular vectors of...

    Text Solution

    |