Home
Class 12
MATHS
Let veca , vecb, vec c be three non cop...

Let `veca , vecb, vec c ` be three non coplanar vectors , and let `vecp , vecq " and " vec r` be the vectors defined by the relation
`vecp = (vecb xx vec c )/([veca vecb vec c ]), vec q = (vec c xx vec a)/([veca vecb vec c ]) " and " vec r = (vec a xx vec b)/([veca vecb vec c ])`
Then the value of the expension
`(vec a + vec b) .vec p + (vecb + vec c) .q + (vec c + vec a) . vec r ` is equal to

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ (\vec{a} + \vec{b}) \cdot \vec{p} + (\vec{b} + \vec{c}) \cdot \vec{q} + (\vec{c} + \vec{a}) \cdot \vec{r} \] where the vectors \(\vec{p}\), \(\vec{q}\), and \(\vec{r}\) are defined as follows: \[ \vec{p} = \frac{\vec{b} \times \vec{c}}{[\vec{a}, \vec{b}, \vec{c}]}, \quad \vec{q} = \frac{\vec{c} \times \vec{a}}{[\vec{a}, \vec{b}, \vec{c}]}, \quad \vec{r} = \frac{\vec{a} \times \vec{b}}{[\vec{a}, \vec{b}, \vec{c}]} \] ### Step 1: Substitute the values of \(\vec{p}\), \(\vec{q}\), and \(\vec{r}\) Substituting these definitions into the expression gives: \[ (\vec{a} + \vec{b}) \cdot \left(\frac{\vec{b} \times \vec{c}}{[\vec{a}, \vec{b}, \vec{c}]}\right) + (\vec{b} + \vec{c}) \cdot \left(\frac{\vec{c} \times \vec{a}}{[\vec{a}, \vec{b}, \vec{c}]}\right) + (\vec{c} + \vec{a}) \cdot \left(\frac{\vec{a} \times \vec{b}}{[\vec{a}, \vec{b}, \vec{c}]}\right) \] ### Step 2: Factor out the common denominator We can factor out the common denominator \([\vec{a}, \vec{b}, \vec{c}]\): \[ \frac{1}{[\vec{a}, \vec{b}, \vec{c}]} \left( (\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} + \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} + \vec{a}) \cdot (\vec{a} \times \vec{b}) \right) \] ### Step 3: Evaluate each dot product 1. **First term**: \[ (\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c}) = \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (\vec{b} \times \vec{c}) \] The second term is zero because \(\vec{b} \cdot (\vec{b} \times \vec{c}) = 0\) (a vector is perpendicular to its cross product). Thus: \[ (\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c}) = \vec{a} \cdot (\vec{b} \times \vec{c}) \] 2. **Second term**: \[ (\vec{b} + \vec{c}) \cdot (\vec{c} \times \vec{a}) = \vec{b} \cdot (\vec{c} \times \vec{a}) + \vec{c} \cdot (\vec{c} \times \vec{a}) \] The second term is zero for the same reason. Thus: \[ (\vec{b} + \vec{c}) \cdot (\vec{c} \times \vec{a}) = \vec{b} \cdot (\vec{c} \times \vec{a}) \] 3. **Third term**: \[ (\vec{c} + \vec{a}) \cdot (\vec{a} \times \vec{b}) = \vec{c} \cdot (\vec{a} \times \vec{b}) + \vec{a} \cdot (\vec{a} \times \vec{b}) \] Again, the second term is zero. Thus: \[ (\vec{c} + \vec{a}) \cdot (\vec{a} \times \vec{b}) = \vec{c} \cdot (\vec{a} \times \vec{b}) \] ### Step 4: Combine the results Now we can combine all the results: \[ \frac{1}{[\vec{a}, \vec{b}, \vec{c}]} \left( \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (\vec{c} \times \vec{a}) + \vec{c} \cdot (\vec{a} \times \vec{b}) \right) \] ### Step 5: Apply the scalar triple product identity Using the identity of the scalar triple product, we know: \[ \vec{a} \cdot (\vec{b} \times \vec{c}) = [\vec{a}, \vec{b}, \vec{c}] \] Thus, we have: \[ \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (\vec{c} \times \vec{a}) + \vec{c} \cdot (\vec{a} \times \vec{b}) = [\vec{a}, \vec{b}, \vec{c}] + [\vec{b}, \vec{c}, \vec{a}] + [\vec{c}, \vec{a}, \vec{b}] \] Since all these determinants are equal: \[ = 3[\vec{a}, \vec{b}, \vec{c}] \] ### Step 6: Final result Thus, the expression simplifies to: \[ \frac{3[\vec{a}, \vec{b}, \vec{c}]}{[\vec{a}, \vec{b}, \vec{c}]} = 3 \] ### Conclusion The final value of the expression is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    DISHA PUBLICATION|Exercise EXERCISE -1 : CONCEPT BUILDER|60 Videos
  • TRIGONOMETRIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE-2|30 Videos

Similar Questions

Explore conceptually related problems

If [vec a vecb vec c] ne 0 and vecP=(vec b xx vec c)/([veca vecb vec c]), vecq=(vec c xx veca)/([veca vec b vec c]), vec r =(vec a xx vec b)/([veca vecb vec c ]) , then veca. vecp+ vecb. vecq+ vec c.vecr is equal to …………

If veca , vecb , vec c are any three coplanar unit vectors , then :

veca , vec b , vec c are non-coplanar vectors and x vec a + y vec b + z vec c = vec 0 then

If vec a,vec b,vec c be any three non-zero non coplanar vectors and vectors vec p=(vec b xx vec c)/(vec a.vec b xx vec c),vec q=(vec c xx vec a)/(vec a.vec b xx vec c) vec r=(vec a xx vec b)/(veca.vec b xx vec c), then [vec p vec q vec r] equals -

If veca, vecb, vec c are three non coplanar vectors , then the value of (vec a.(vec b xx vec c) )/((vec c xx vec a).vec b) + ( vecb.(vec a xx vec c ))/(vec c.(vec a xx vec b)) is

For any three vectors vec a, vec b, vec c, (vec a-vec b) * (vec b-vec c) xx (vec c-vec a) is equal to

If (vec a xx vec b)^2 + (veca .vecb)^2 = 676 and |vecb| = 2 , then |veca| is equal to

If [veca xx vecb vecb xx vec c vec c xx vec a] = lamda [veca vecb vec c ]^2 then lamda is equal to

If veca= vecP + vecq, vecP xx vecb = vec0 and vecq. Vecb =0 then prove that (vecbxx(veca xx vecb))/(vecb.vecb)=vecq

If veca= vecP + vecq, vecP xx vecb = vec0 and vecq. vecb =0 then prove that (vecbxx(veca xx vecb))/(vecb.vecb)=vecq

DISHA PUBLICATION-VECTOR ALGEBRA-EXERCISE -2 : CONCEPT APPLICATOR
  1. veca, vecb ,vec c are three vectors with magnitude |veca| = 4, |vecb|...

    Text Solution

    |

  2. If the two adjacent sides of two rectangles are represented by vect...

    Text Solution

    |

  3. OA, OB, OC are the sides of a rectangular parallelopiped whose diagona...

    Text Solution

    |

  4. If the positive numbers a, b and c are the pth, qth and rth terms of G...

    Text Solution

    |

  5. A vector veca=(x,y,z) makes an obtuse angle with F-axis, and make equa...

    Text Solution

    |

  6. Let vecOB = hati + 2hatj + 2hatk " and" vecOA = 4hati + 2hatj + 2hatk ...

    Text Solution

    |

  7. If a1 , a2 and a3 are three numbers satisfying a1^2 + a2^2 +a3^2 = 1 ,...

    Text Solution

    |

  8. Let veca , vecb and vec c be non coplanar unit vectors equally incl...

    Text Solution

    |

  9. Let veca , vecb, vec c be three non coplanar vectors , and let vecp ,...

    Text Solution

    |

  10. Let veca= 2hati+hatj -2hatk and vecb=hati+hatj. If vec c is a vecto...

    Text Solution

    |

  11. Let vec r , vec a , vec b and vec c be four non zero vectors such tha...

    Text Solution

    |

  12. Let vec r = (veca xx vecb) sin x + (vecb + vec c) cos y + 2 (vec c xx...

    Text Solution

    |

  13. A girl walks 4 km towards west, then she walks 3 km in a direction 30...

    Text Solution

    |

  14. If vec a+vec b+vec c=0, prove that (vec a xx vec b)=(vec b xx vec c)=(...

    Text Solution

    |

  15. If |vec a + vecb| = |vec a - vecb| , then which one of the following i...

    Text Solution

    |

  16. The resultant of forces vecP and vec Q is vecR . If vec Q is doubled t...

    Text Solution

    |

  17. If vec b is a vector whose initial point divides thejoin of 5 hat ...

    Text Solution

    |

  18. A body travels a distance s in t seconds. It starts from rest and ends...

    Text Solution

    |

  19. Two particles start simultaneously from the same point and move along ...

    Text Solution

    |

  20. vec p , vec q ,a n d vec r are three mutually perpendicular vectors of...

    Text Solution

    |