Home
Class 12
MATHS
A value of x satisfying the equation "si...

A value of x satisfying the equation `"sin"[cot^(-1)(1+x)]="cos"["tan"^(-1)x]` is:

A

`-(1)/(2)`

B

-1

C

0

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin(\cot^{-1}(1+x)) = \cos(\tan^{-1}(x)) \), we will follow these steps: ### Step 1: Define the angles Let: - \( \alpha = \cot^{-1}(1+x) \) - \( \beta = \tan^{-1}(x) \) ### Step 2: Construct triangles For \( \alpha = \cot^{-1}(1+x) \): - In a right triangle, if \( \cot(\alpha) = 1+x \), then the opposite side is 1 and the adjacent side is \( 1+x \). - The hypotenuse can be calculated using the Pythagorean theorem: \[ \text{Hypotenuse} = \sqrt{1^2 + (1+x)^2} = \sqrt{1 + (1 + 2x + x^2)} = \sqrt{x^2 + 2x + 2} \] For \( \beta = \tan^{-1}(x) \): - In another right triangle, if \( \tan(\beta) = x \), then the opposite side is \( x \) and the adjacent side is 1. - The hypotenuse can be calculated as: \[ \text{Hypotenuse} = \sqrt{x^2 + 1^2} = \sqrt{x^2 + 1} \] ### Step 3: Find \( \sin(\alpha) \) and \( \cos(\beta) \) Using the triangles constructed: - For \( \sin(\alpha) \): \[ \sin(\alpha) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1}{\sqrt{x^2 + 2x + 2}} \] - For \( \cos(\beta) \): \[ \cos(\beta) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{\sqrt{x^2 + 1}} \] ### Step 4: Set the two expressions equal Now we set \( \sin(\alpha) \) equal to \( \cos(\beta) \): \[ \frac{1}{\sqrt{x^2 + 2x + 2}} = \frac{1}{\sqrt{x^2 + 1}} \] ### Step 5: Cross-multiply and simplify Cross-multiplying gives: \[ \sqrt{x^2 + 1} = \sqrt{x^2 + 2x + 2} \] ### Step 6: Square both sides Squaring both sides results in: \[ x^2 + 1 = x^2 + 2x + 2 \] ### Step 7: Simplify the equation Subtract \( x^2 \) from both sides: \[ 1 = 2x + 2 \] Rearranging gives: \[ 2x = 1 - 2 \implies 2x = -1 \implies x = -\frac{1}{2} \] ### Final Answer The value of \( x \) satisfying the equation is: \[ \boxed{-\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 1: (CONCEPT BUILDER)|60 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos

Similar Questions

Explore conceptually related problems

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

Sum of values x satisfying the equation sin^(-1)(x^(2)-5x+7)=2tan^(-1)1 is

The values of x satisfying the equation 2tan^(-1)(3x)=sin^(-1)((6x)/(1+9x^(2))) is equal to

The values of x satisfying the equation 2tan^(-1)(3x)=sin^(-1)((6x)/(1+9x^(2))) is equal to

The value of x satisfying the equation tan^(-1)(2x)+tan^(-1)3x=(pi)/(4) is

The value of x satisfying the equation (sin^(-1)x)^(3)-(cos^(-1)x)^(3)+(sin^(-1)x)(cos^(-1)x)(sin^(-1)x-cos^(-1)x)=(pi^(3))/(16) is :

DISHA PUBLICATION-INVERSE TRIGONOMETIC FUNCTIONS-EXERCISE - 2: (CONCEPT APPLICATOR)
  1. A value of x satisfying the equation "sin"[cot^(-1)(1+x)]="cos"["tan"^...

    Text Solution

    |

  2. If cos^(-1)lambdacos^(-1)mu+cos^(-1)gamma=3pi, then find the value of ...

    Text Solution

    |

  3. Find the domain and range of f(x) = sin^-1 (log [x]) + log (sin^-1 [x...

    Text Solution

    |

  4. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2)p then the value of x^(100)+...

    Text Solution

    |

  5. If u=cot^-1 sqrt(tanalpha)-tan^-1 sqrt(tan alpha), then tan(pi/4-u/2) ...

    Text Solution

    |

  6. Find the real solutions of the eqution tan^(-1)sqrt(x(x+1))+sin^(-1)sq...

    Text Solution

    |

  7. The domain set of the function f(x) = tan^(-1) x -cot ^(-1) x + cos ...

    Text Solution

    |

  8. The sum of the infinite series "sin"^(-1)((1)/(sqrt2))+"sin"^(-1)((s...

    Text Solution

    |

  9. If cos^(-1)x-"cos"^(-1)y/2=alpha, then 4x^(2)-4xycos alpha+y^(2) is eq...

    Text Solution

    |

  10. 5cos^(-1)((1-x^(2))/(1+x^(2)))+7sin^(-1)((2x)/(1+x^(2)))-4tan^(-1)((2x...

    Text Solution

    |

  11. If alpha="sin"^(-1)("cos"("sin"^(-1)x)) and beta="cos"^(-1)("sin"("cos...

    Text Solution

    |

  12. If x, y, z are in A.P. and tan^(-1) x, tan^(-1) y and tan^(-1)z are al...

    Text Solution

    |

  13. If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi, then

    Text Solution

    |

  14. Q. the value of tan^-1(a/(b+c))+tan^-1(b/(c+a)), if /=90^@ in triangle...

    Text Solution

    |

  15. If 1/2"sin"^(-1)(2x)/(1+x^2)+1/2"cos"^(-1)(1-y^2)/(1+y^2)+1/3"tan"^(-1...

    Text Solution

    |

  16. If cos^(-1)sqrt(p)+cos^(-1)sqrt(1-p)+cos^(-1)sqrt(1-q)=(3pi)/(4)"than ...

    Text Solution

    |

  17. If A="tan"^(-1)((xsqrt3)/(2K-x)) and B="tan"^(-1)((2x-K)/(Ksqrt3)), th...

    Text Solution

    |

  18. If f(x)=cot^(-1) ((3x-x^3)/(1-3x^2)) and g(x)=cos^(-1)((1-x^2)/(1+x^2)...

    Text Solution

    |

  19. Find x satisfying [tan^(-1)x]+[cos^(-1)x]=2, where [] represents the g...

    Text Solution

    |

  20. Evaluate underset(xto-1^(+))lim(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(1+x)).

    Text Solution

    |

  21. The value of sin^(-1){cot(sin^(-1)(sqrt((2-sqrt3)/4)+cos^(-1)(sqrt(12)...

    Text Solution

    |