Home
Class 12
MATHS
If "cos"^(-1)x> "sin"^(-1)x, then the se...

If `"cos"^(-1)x> "sin"^(-1)x`, then the set of all values of x is

A

[0,1]

B

`[0,1/sqrt2)`

C

`[-1,1/sqrt2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \cos^{-1} x > \sin^{-1} x \), we can follow these steps: ### Step 1: Use the identity We know that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] From this identity, we can express \( \cos^{-1} x \) in terms of \( \sin^{-1} x \): \[ \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x \] ### Step 2: Substitute into the inequality Now, substituting this into our inequality gives: \[ \frac{\pi}{2} - \sin^{-1} x > \sin^{-1} x \] ### Step 3: Rearrange the inequality Rearranging the inequality, we have: \[ \frac{\pi}{2} > 2 \sin^{-1} x \] This simplifies to: \[ \sin^{-1} x < \frac{\pi}{4} \] ### Step 4: Apply the sine function Now we apply the sine function to both sides. Since the sine function is increasing in the interval \( [0, \frac{\pi}{2}] \), we can write: \[ x < \sin\left(\frac{\pi}{4}\right) \] ### Step 5: Calculate the sine value We know that: \[ \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] Thus, we have: \[ x < \frac{1}{\sqrt{2}} \] ### Step 6: Consider the domain of \( x \) Since \( \cos^{-1} x \) and \( \sin^{-1} x \) are defined for \( x \) in the interval \( [-1, 1] \), we must also consider this constraint. Therefore, the final solution is: \[ x \in [-1, \frac{1}{\sqrt{2}}) \] ### Final Answer The set of all values of \( x \) is: \[ [-1, \frac{1}{\sqrt{2}}) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos

Similar Questions

Explore conceptually related problems

If cos^(-1)x=sin^(-1)3x, then sum of all possible values of x

If 4\ cos^(-1)x+sin^(-1)x=pi , then the value of x is

If 4 cos^(-1)x + sin^(-1) x = pi , then the value of x is

If quad cos^(-1)x<1 and 1+sin(cos^(-1)x)+sin^(2)(cos^(-1)x)+sin^(3)(cos^(-1)x)+...oo=2 then the value of 12x^(2) is

The equation 2 cos^(-1)x=sin^(-1)(2x sqrt(1-x^(2))) is valid for all values of x satisfying

If the expression ([sin((x)/(2))+cos((x)/(2))-i tan(x)])/([1+2i sin((x)/(2))]) is real,then the set of all possible values of x is.......

DISHA PUBLICATION-INVERSE TRIGONOMETIC FUNCTIONS-EXERCISE - 1: (CONCEPT BUILDER)
  1. Find the principal value of sec^(-1)(2)

    Text Solution

    |

  2. Principal value of "tan"^(-1)1+"cos"^(-1)((-1)/(2))+"sin"^(-1)((-1)/(2...

    Text Solution

    |

  3. If "cos"^(-1)x> "sin"^(-1)x, then the set of all values of x is

    Text Solution

    |

  4. "sin"^(-1)("sin" 5)>x^2-4x holds if

    Text Solution

    |

  5. If x epsilon(7pi,8pi), then "tan"^(-1)sqrt((1-"cos" x)/(1+"cos" x))=

    Text Solution

    |

  6. If "tan"^(-1)(-x)+"cos"^(-1)((-1)/(2))=pi/2, then the value of x is eq...

    Text Solution

    |

  7. "cos"^(-1)("cos"((7pi)/(5)))=

    Text Solution

    |

  8. sin[cot^(-1)(cot\ (17pi)/3)]

    Text Solution

    |

  9. The principal values of cost^(-1)(-sin(7pi)/(6)) is

    Text Solution

    |

  10. The value of underset(x to pi/2)limsqrt(("tan"x-"sin"("tan"^(-1)("tan"...

    Text Solution

    |

  11. Find the value of cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

    Text Solution

    |

  12. If cot^(-1)n/pi>pi/6,n in N , then the maximum value of n is 6 (b) ...

    Text Solution

    |

  13. The value of cos (1/2 cos^(-1) . 1/8) is equal to

    Text Solution

    |

  14. The principal value of "sin"^(-1)("sin""(5pi)/(3)) is

    Text Solution

    |

  15. Given that "sin"^(-1)("sin""(3pi)/(4))=(2pi)/(k),then k=

    Text Solution

    |

  16. If underset(i=1)overset(n)sum cos^(-1) alpha(i)=0," then "underset(i=1...

    Text Solution

    |

  17. Complete solution set of tan^2(sin^(-1)x)>1 is (-1,-1/(sqrt(2)))uu(1/(...

    Text Solution

    |

  18. -(2pi)/(5) is the principal value of

    Text Solution

    |

  19. Find the value of sin [ arc cos (- 1/2)]

    Text Solution

    |

  20. The positive integral solution of "tan"^(-1)x+"cos"^(-1)(y)/(sqrt(1+...

    Text Solution

    |