Home
Class 12
MATHS
"sin"^(-1)("sin" 5)>x^2-4x holds if...

`"sin"^(-1)("sin" 5)>x^2-4x` holds if

A

`x=2-sqrt(9-2pi)`

B

`x=2+sqrt(9-2pi)`

C

`xgt2+sqrt(9-2pi)`

D

`x epsilon(2-sqrt(9-2pi),2+sqrt(9-2pi))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \sin^{-1}(\sin 5) > x^2 - 4x \), we can follow these steps: ### Step 1: Evaluate \( \sin^{-1}(\sin 5) \) Since \( 5 \) is in the range \( \left( \frac{3\pi}{2}, 2\pi \right) \), we can find \( \sin 5 \) as follows: \[ \sin 5 = \sin(5 - 2\pi) = \sin(5 - 6.2832) = \sin(-1.2832) \quad (\text{since } 2\pi \approx 6.2832) \] Thus, \[ \sin^{-1}(\sin 5) = 5 - 2\pi \] ### Step 2: Rewrite the inequality Now we can rewrite the inequality: \[ 5 - 2\pi > x^2 - 4x \] This can be rearranged to: \[ x^2 - 4x + (2\pi - 5) < 0 \] ### Step 3: Identify coefficients Here, we identify the coefficients: - \( a = 1 \) - \( b = -4 \) - \( c = 2\pi - 5 \) ### Step 4: Use the quadratic formula The roots of the quadratic equation \( x^2 - 4x + (2\pi - 5) = 0 \) can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Substituting the values: \[ x = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot (2\pi - 5)}}{2 \cdot 1} \] \[ x = \frac{4 \pm \sqrt{16 - 8\pi + 20}}{2} \] \[ x = \frac{4 \pm \sqrt{36 - 8\pi}}{2} \] \[ x = 2 \pm \sqrt{9 - 2\pi} \] ### Step 5: Determine the interval The quadratic \( x^2 - 4x + (2\pi - 5) < 0 \) will be negative between its roots. Therefore, the solution to the inequality is: \[ x \in \left( 2 - \sqrt{9 - 2\pi}, 2 + \sqrt{9 - 2\pi} \right) \] ### Final Answer Thus, the inequality \( \sin^{-1}(\sin 5) > x^2 - 4x \) holds for: \[ x \in \left( 2 - \sqrt{9 - 2\pi}, 2 + \sqrt{9 - 2\pi} \right) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos
  • INVERSE TRIGONOMETIC FUNCTIONS

    DISHA PUBLICATION|Exercise EXERCISE - 2: (CONCEPT APPLICATOR)|30 Videos
  • INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2 CONCEPT APPLICATOR|31 Videos
  • JEE MAIN - 2019 (HELD ON: 9TH APRIL 2019(MORNING SHIFT))

    DISHA PUBLICATION|Exercise MCQs|30 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)(sin5)>x^(2)-4x holds if

sin^(-1)(sin5)>x^(2)-4x hold if (a)x=2-sqrt(9-2 pi)(b)x=2+sqrt(9-2 pi)(c)x>2+sqrt(9-2 pi)(d)x in(2-sqrt(9-2 pi),2+sqrt(9-2 pi))

If sin^-1(sin 5)gtx^(2)-4x then

solve sin^(-1) (sin 5) gt x^(2) - 4x

If sin^(-1)1 + "sin"^(-1)(4)/(5)=sin^(-1)x , then what is x equal to?

The values of x in (0, pi) satisfying the equation. |{:(1+"sin"^(2)x, "sin"^(2)x, "sin"^(2)x), ("cos"^(2)x, 1+"cos"^(2)x, "cos"^(2)x), (4"sin" 2x, 4"sin"2x, 1+4"sin" 2x):}| = 0 , are

DISHA PUBLICATION-INVERSE TRIGONOMETIC FUNCTIONS-EXERCISE - 1: (CONCEPT BUILDER)
  1. Principal value of "tan"^(-1)1+"cos"^(-1)((-1)/(2))+"sin"^(-1)((-1)/(2...

    Text Solution

    |

  2. If "cos"^(-1)x> "sin"^(-1)x, then the set of all values of x is

    Text Solution

    |

  3. "sin"^(-1)("sin" 5)>x^2-4x holds if

    Text Solution

    |

  4. If x epsilon(7pi,8pi), then "tan"^(-1)sqrt((1-"cos" x)/(1+"cos" x))=

    Text Solution

    |

  5. If "tan"^(-1)(-x)+"cos"^(-1)((-1)/(2))=pi/2, then the value of x is eq...

    Text Solution

    |

  6. "cos"^(-1)("cos"((7pi)/(5)))=

    Text Solution

    |

  7. sin[cot^(-1)(cot\ (17pi)/3)]

    Text Solution

    |

  8. The principal values of cost^(-1)(-sin(7pi)/(6)) is

    Text Solution

    |

  9. The value of underset(x to pi/2)limsqrt(("tan"x-"sin"("tan"^(-1)("tan"...

    Text Solution

    |

  10. Find the value of cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

    Text Solution

    |

  11. If cot^(-1)n/pi>pi/6,n in N , then the maximum value of n is 6 (b) ...

    Text Solution

    |

  12. The value of cos (1/2 cos^(-1) . 1/8) is equal to

    Text Solution

    |

  13. The principal value of "sin"^(-1)("sin""(5pi)/(3)) is

    Text Solution

    |

  14. Given that "sin"^(-1)("sin""(3pi)/(4))=(2pi)/(k),then k=

    Text Solution

    |

  15. If underset(i=1)overset(n)sum cos^(-1) alpha(i)=0," then "underset(i=1...

    Text Solution

    |

  16. Complete solution set of tan^2(sin^(-1)x)>1 is (-1,-1/(sqrt(2)))uu(1/(...

    Text Solution

    |

  17. -(2pi)/(5) is the principal value of

    Text Solution

    |

  18. Find the value of sin [ arc cos (- 1/2)]

    Text Solution

    |

  19. The positive integral solution of "tan"^(-1)x+"cos"^(-1)(y)/(sqrt(1+...

    Text Solution

    |

  20. If "tan"^(-1)(x+1)+cot^(-1)(x-1)="sin"^(-1) (4/5) + cos^(-1) (3/5), th...

    Text Solution

    |